Future of CP violation in $a_{s l}$

Matthew Kirk
N Durham University

"Toward the Ultimate Precision in Flavour Physics"

 Warwick - 17 April 2018
$a_{s l}$

- $a_{s l} \equiv \frac{\Gamma(\bar{B} \rightarrow f)-\Gamma(B \rightarrow \bar{f})}{\Gamma(\bar{B} \rightarrow f)+\Gamma(B \rightarrow \bar{f})}$
- $a_{s l} \approx \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)$

Ratio is nice for calculation - major uncertainty in both (f_{B}) cancels out

- Theory: $a_{s l}^{s}=2.22 \pm 0.27 \times 10^{-5}$

$$
\begin{aligned}
& a_{s l}^{d}=(-47 \pm 6) \times 10^{-5} \\
& a_{s l}^{d}=(-150 \pm 170) \times 10^{-5}
\end{aligned}
$$

- Exp: $a_{s l}^{s}=(170 \pm 300) \times 10^{-5}$

B_{s} Mixing

$$
\frac{\partial}{\partial t}\binom{B_{s}}{\bar{B}_{s}}=\left(\hat{M}-\frac{i}{2} \hat{\Gamma}\right)\binom{B_{s}}{\overline{B_{s}}}
$$

$$
\begin{aligned}
M_{12}^{q} & =\frac{G_{F}^{2}}{16 \pi^{2}} \lambda_{t}^{2} M_{W}^{2} S_{0}\left(x_{t}\right) \hat{\eta}_{B} \frac{\left\langle\bar{B}_{q}\right| Q_{1}\left|B_{q}\right\rangle}{2 M_{B_{q}}} \\
\Gamma_{12}^{q} & =-\frac{G_{F}^{2} m_{b}^{2}}{24 \pi M_{B_{q}}} \sum_{x=u, c} \sum_{y=u, c}\left[G_{1}^{q, x y}\left\langle\bar{B}_{q}\right| Q_{1}\left|B_{q}\right\rangle-G_{2}^{q, x y}\left\langle\bar{B}_{q}\right| Q_{2}\left|B_{q}\right\rangle\right]+\mathcal{O}\left(1 / m_{b}\right)
\end{aligned}
$$

What are the limits on $a_{s l}$?

- Unknown matrix elements of dimension 7 operators
- Being done by lattice (e.g. HPQCD soon)
- Also calculable via sum rules (Kirk, Lenz, Rauh 1711.02100)
- NNLO QCD
- In 1709.02160, some $O\left(\alpha_{s}^{2}\right)$ corrections calculated

Duality Violation?

- $a_{s l}$ theory calculation depends on assumption of quark-hadron duality
- How can we test this?
- Calculation of Γ_{12} - sum over intermediate shared decay states of B and \bar{B} mesons
- Is quark level sum same?

Phenomenological study

- On the ultimate precision of meson mixing observables (1603.07770)
- Phenomenological study of duality violation in mixing
- By quark-hadron duality we mean validity of HQE
- So e.g. $\exp \left(-m_{b} / \Lambda\right)$ term goes to zero in HQE - could be source of daulity violation in some "full" solution of QCD.

Possible source of duality violation

- Expansion parameter is really $\frac{\Lambda}{\sqrt{M_{i}^{2}-M_{f}^{2}}}$
- Different in different decay channels

Channel Expansion parameter $x \quad$ Numerical value $\exp [-1 / x]$

$$
\begin{array}{llll}
\hline b \rightarrow c \bar{c} s & \frac{\Lambda}{\sqrt{m_{b}^{2}-4 m_{c}^{2}}} \approx \frac{\Lambda}{m_{b}}\left(1+2 \frac{m_{c}^{2}}{m_{b}^{2}}\right) & 0.054-0.58 & 9.4 \cdot 10^{-9}-0.18 \\
b \rightarrow c \bar{u} s & \frac{\Lambda}{\sqrt{m_{b}^{2}-m_{c}^{2}}} \approx \frac{\Lambda}{m_{b}}\left(1+\frac{1}{2} \frac{m_{c}^{2}}{m_{b}^{2}}\right) & 0.045-0.49 & 1.9 \cdot 10^{-10}-0.13 \\
b \rightarrow u \bar{u} s & \frac{\Lambda}{\sqrt{m_{b}^{2}-4 m_{u}^{2}}}=\frac{\Lambda}{m_{b}} & 0.042-0.48 & 4.2 \cdot 10^{-11}-0.12 \\
\hline
\end{array}
$$

GIM suppression broken with duality violation

- Break up Γ_{12} using CKM unitarity

$$
\frac{\Gamma_{12}}{M_{12}}=-\frac{\Gamma_{12}^{c c}}{\widetilde{M}_{12}}-2 \frac{\lambda_{u}}{\lambda_{t}} \frac{\Gamma_{12}^{c c}-\Gamma_{12}^{u c}}{\widetilde{M}_{12}}-\frac{\lambda_{u}^{2}}{\lambda_{t}^{2}} \frac{\Gamma_{12}^{c c}-2 \Gamma_{12}^{u c}+\Gamma_{12}^{u u}}{\widetilde{M}_{12}}
$$

- See GIM suppression in action
- Break duality differently in each channel \rightarrow large effects

Limits on $a_{\text {sl }}$ from duality violation

Limits on $a_{\text {sl }}$ from duality violation

Limits on $a_{s l}$ from duality violation

- These limits come from bounds on $\frac{\Delta \Gamma_{s}}{\Delta M_{s}}=\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)$
- Currently ~ 15-20\% precision from theory
- Main uncertainties in this calculation come from matrix elements of dimension 7 operators, scale variation

Limits on $a_{s l}$ from duality violation

- In 1603.07770 we did a forward looking / "aggressive" calculation - what if the dimension 7 matrix elements were known to 20\% accuracy?
- Reduce the theory error by almost $1 / 3$
- Is this a plausible scenario?

Sum rules for $a_{s l}$

- In 1711.02100 we used sum rules to calculate bag parameters
- For dimension 6 operators, errors of $\sim 10-15 \%$ achieved
- Comparable with latest lattice

Sum rules for $a_{s l}$

- In 1711.02100 we used sum rules to calculate bag parameters
- For dimension 6 operators, errors of $\sim 10-15 \%$ achieved
- Comparable with latest lattice

Sum rules for $a_{s l}$

- Calculation for dimension 7 operators should be doable in the same way
- Hopefully provide a timely comparison with upcoming lattice results
- But issues with calculation (pole cancellation)

NNLO QCD Corrections

- In 1709.02160, $\mathrm{O}\left(\alpha_{s}^{2} N_{f}\right)$ corrections calculated
- Steps towards full NNLO calculation
- Expected to take~5-10 years
- Also NLO QCD for dimension 7 operators has been studied but issues with uncancelled divergences

Future knowledge of $a_{s l}$

- If similar accuracy as dimension 6 possible, and higher order corrections calculated, can achieve high precision

Future knowledge of $a_{s l}$

- If similar accuracy as dimension 6 possible, and higher order corrections calculated, can achieve high precision

Summary

- $a_{s l}^{\text {s,d }}$ is well known from theory
- But if we question an underlying assumption (quark-hadron duality violation) then uncertainty is much larger
- Lattice / sum rule calculation of dimension 7 matrix elements will improve SM prediction and allow to test quark-hadron duality
- NP might then be much more clearly seen

