Charming New Physics in Beautiful Processes?

Matthew Kirk

Previous: PhD @ IPPP, Durham, UK with Alex Lenz (2014-2018) Now: Postdoc with Guido Martinelli + Luca Silvestrini

Quark Hadron Duality Violation

- 1603.07770
- With Tom Jubb, Alex Lenz, Gilberto TetlalmatziXolocotzi

Quark Hadron Duality Violation

- Quark Hadron duality basically means that if we sum over enough quark level processes (perturbative), we can approximate the hadronic processes (nonperturbative)
- Duality violation says something is missing

Heavy Quark Expansion

- HQE is method of calculating b quark processes
- Taylor expansion in $\Lambda_{\mathrm{QCD}} / m_{b}$
- Really more like $\mathrm{O}(1 \mathrm{GeV})$ / energy release
- We use HQE wrong \rightarrow duality violation

$$
\Gamma=\Gamma_{0}+\frac{\Lambda^{2}}{m_{b}^{2}} \Gamma_{2}+\frac{\Lambda^{3}}{m_{b}^{3}} \Gamma_{3}+\frac{\Lambda^{4}}{m_{b}^{4}} \Gamma_{4}+\ldots
$$

Heavy Quark Expansion

- Expect duality to be violated differently in different decay channels
- Look at e.g. mixing expression - GIM and CKM suppressed.

$$
-\frac{\Gamma_{12}^{s}}{M_{12}^{s}}=\frac{\Gamma_{12}^{s, c c}}{\tilde{M}_{12}^{s}}+2 \frac{\lambda_{u}}{\lambda_{t}} \frac{\Gamma_{12}^{s, c c}-\Gamma_{12}^{s, u c}}{\tilde{M}_{12}^{s}}+\left(\frac{\lambda_{u}}{\lambda_{t}}\right)^{2} \frac{\Gamma_{12}^{s, c c}-2 \Gamma_{12}^{s, u c}+\Gamma_{12}^{s, u u}}{\tilde{M}_{12}^{s}}
$$

- Duality violation breaks this \rightarrow potentially large effects

Limits on SM prediction

- Use "best" quantities to constraint duality violation
- Then flip around and see how big the effect can be in poorly measured observables
- Distinguish breakdown of tools to breakdown of SM

Limits on SM prediction

- Use "best
- Then flip poorly me
- Distingui:

ation n be in
of SM

Meson lifetimes

- Same structure in lifetimes, can constraint duality here as well
- Look for consistency with mixing limits

Future of precision

- Best way to test HQE/QHD is better theory to compare to experiment.
- Examine how far we can go in the near future
- Make reasonable assumptions about progress
- Dim7 matrix elements main issue
- See sum rules / future lattice

D mixing from duality violation?

- HQE calculation gives result too small (by factor 1000)
- HQE convergence too slow?
- NP at work?
- Or duality violation?

D mixing from duality violation?

- Extreme GIM cancellation at work
- Terms in sum are of right size, but cancel to several decimal places

$$
\Gamma_{12}=-\lambda_{s}^{2}\left(\Gamma_{12}^{s s}-2 \Gamma_{12}^{s d}+\Gamma_{12}^{d d}\right)+2 \lambda_{s} \lambda_{b}\left(\Gamma_{12}^{s d}-\Gamma_{12}^{d d}\right)-\lambda_{b}^{2} \Gamma_{12}^{d d} .
$$

$$
\begin{aligned}
& \Gamma_{12}^{s s}=1.8696-5.5231 \bar{z}_{s}-13.8143 \bar{z}^{2}+\ldots \bar{z}^{3}+\ldots, \\
& \Gamma_{12}^{s d}=1.8696-2.7616 \bar{z}_{s}-7.4906 \bar{z}^{3}+\ldots \bar{z}^{3}+\ldots, \\
& \Gamma_{12}^{d d}=1.8696 .
\end{aligned}
$$

D mixing from duality violation?

- 20% violation causes huge increase

NP in $(\bar{b} s)(\bar{c} c) ?$

- 1701.09183
- With Sebastian Jäger, Alex Lenz, Kirsten Leslie

$\mathrm{NP} \operatorname{in}(\bar{b} s)(\bar{c} c) ?$

- Why $(\bar{b} s)(\bar{c} c)$?
- SM contribution to ($\bar{b} s)(\bar{c} c)$ (from integrating out W) gives around half the SM contribution to the $b \rightarrow s \mu \mu$ transition

$\mathrm{NP} \operatorname{in}(\bar{b} s)(\bar{c} c) ?$

- Contribution is flavour universal, but can still be partial explanation of $b \rightarrow s \bar{l} l$ anomalies
- But these operators also contribute to Bs mixing, Bs lifetimes, and $B_{s} \rightarrow X_{s} \gamma$
- So any NP gives rise to a correllated effect

Contribution to rare decays

Contribution to rare decays

Contribution to mixing and lifetimes

Contribution to mixing and lifetimes

How do the constraints look?

How do the constraints look?

Ongoing work with $(\bar{b} s)(\bar{c} c)$

Complex NP

$B \rightarrow J / \psi K$ Constraints on Complex ΔC_{1} and ΔC_{2}

Charming Dark Matter

- 1709.01930
- With Tom Jubb, Alex Lenz

DM and flavour

- Consider a DM candidate with new flavour quantum number
- Interesting as opens up non trivial interactions
- But puts you at risk of violating large number of flavour bounds

DM and flavour

- Many models invoke MFV - CKM only source of flavour changing effects
- We go beyond MFV - CKM + new matrix
- As previously mentioned, D mixing not explained by current short distance calculations
- Maybe DM is part of the NP to explain it?

Bounds from DM

- Direct detection - DM scattering from nuclei
- Indirect detection - DM decay in space alters cosmic ray proportions
- Collider searches for DM production - invisible at LHC

Bounds from flavour

- D mixing
- Rare D decay $-D^{0} \rightarrow \mu \mu, D^{0} \rightarrow \pi \mu \mu$

Finding allowed parameter space

- We had many constraints, and large parameter space
- 3 DM particles, 1 mediator, 3×3 coupling matrix.
- Use Multinest - Bayesian inference tool, Monte Carlo Markov Chain
- Produces 1,2 sigma allowed regions

Charm is a possibility

- Takeaway message is that with a large coupling to charm (dominant over top, up) there are relatively light DM and mediator masses still allowed.
- Possibility of D mixing ruling out or in these extended models

Sum rules for mixing and lifetime matrix elements

- 1711.02100
- With Alex Lenz, Thomas Rauh

Sum rules for mixing and lifetime matrix elements

- Matrix elements of effective operators are vital to predictions of meson mixing and meson lifetimes
- Both in the SM, and for possible BSM effects
- Standard way of determing them - lattice QCD

Sum rules

- Different technique to lattice - can provide an independent determination
- Based on quark hadron duality, and analyticity of correlation functions

Sum rules

- Use quark hadron duality + Cauchy residue theorem

Deform the contour:

Can be computed $\quad \Pi(\omega)=\int_{0}^{\infty} d \eta \frac{\rho_{\Pi}(\eta)}{\eta-\omega}+\oint d \eta \frac{\Pi(\eta)}{\eta-\omega}$ with an OPE when ω is far away from the physical cut

Sum rules

- We can formulate the sum rule to calculate just deviation from VSA, i.e. $\Delta B=B-1$
- Allows for better precision in results
- $\Delta B=O(0.1)$ with $O(10 \%)$ error
- $B=O(1)$ with $O(1 \%)$ error

B Mixing results

D Mixing results

B lifetimes results

D Lifetimes results

Sum rules vs lattice

- For B sector, our results are comparable in precision to lattice
- Nice to have independent check
- For D mixing we are again comparable
- For D lifetimes, we are the only calculation available

$$
\tau\left(D^{+}\right) / \tau\left(D^{0}\right): \exp =2.536 \pm 0.019 \quad \text { theory }=2.2_{-1.8}^{+1.7}
$$

Sum rules vs lattice

- For B sector, our results are comparable in precision to lattice
- Nice to have independent check
- For D mixing we are again comparable
- For D lifetimes, we are the only calculation available

$$
\tau\left(D^{+}\right) / \tau\left(D^{0}\right): \exp =2.536 \pm 0.019 \quad \text { theory }=2.7_{-0.82}^{+0.74}
$$

Ongoing work with sum rules

- Strange mass corrections
- Dim7 operators

B_{d} bag parameters

B_{s} bag parameters

Dimension 7 operators

- Leading errors in $\Delta \Gamma$
- From our duality violation

$$
\begin{aligned}
& R_{2}=\frac{1}{m_{b}^{2} \bar{b}_{i} \overleftarrow{D}_{\lambda} \gamma_{\mu}\left(1-\gamma^{5}\right) D^{\lambda} q_{i} \bar{b}_{j} \mu^{\prime}\left(1-\gamma^{5}\right) q_{j},} \\
& R_{3}=\frac{1}{m_{b}^{2} \bar{b}_{i} \overleftarrow{D}_{\lambda}\left(1-\gamma^{5}\right) D^{\lambda} q_{i} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{j},}
\end{aligned}
$$ paper - can give 1 /3 improvement in precison

- Also in progress by HPQCD lattice group

One Constraint to Kill Them All?

- 1712.06572
- With Luca Di Luzio, Alex Lenz

B_{s} mixing as $R_{K^{(\omega)}}$ Constraint

- Generally, any R_{K} explanation must be constrained by B_{s} mixing
- $(\bar{b} s)(\overline{l l})$ operator $\rightarrow(\bar{b} s)(\bar{b} s)$ operator at 1 loop
- But e.g. Z' gives tree level contribution, so even more so

Bs mixing in the SM

- SM prediction for B_{s} mixing strongly depends on hadronic matrix element of effective operator
- $\Delta M_{s}^{\mathrm{SM}} \sim|\langle O\rangle|^{2}$
- Fermilab-MILC produce new calculation in 2016, now dominates the FLAG average

Bs mixing in the SM

- Using previous FLAG average, get $\Delta M_{s}^{\mathrm{SM}}=18.3 \pm 2.7 \mathrm{ps}^{-1}$
- Using new one, get $\Delta M_{s}^{S M}=20.01 \pm 1.25 \mathrm{ps}^{-1}$
- For comparison, $\Delta M_{s}^{\exp }=17.757 \pm 0.021 \mathrm{ps}^{-1}$
- Gone from agreement to 1.8σ discrepancy

Limits on NP

- Many NP models predict a positive contribution to ΔM_{s}
- So if SM already above exp, NP increase much more tightly constrained

Limits on NP - Z' (tree contribution)

${ }_{k_{2}^{\prime}=1}$

Limits on NP - Z' (tree contribution)

 $\lambda_{k}^{\prime}=1$

Limits on NP - leptoquark (1-loop

Ongoing work with mixing consraints on NP

Loopholes

1)F/MILC results will be high compared to other lattice groups \rightarrow back to old situation
2)Complex coupling \rightarrow allows negative contribution to ΔM_{s}
3)Multiple chirality operators \rightarrow interference allows negative contribution

Loopholes - complex coupling

- As soon as we have complex couplings
- \rightarrow new sources of CP violation
- \rightarrow new constraints
- For B_{s} mixing, mixing induced CP asymmetry

Loopholes - different chiralities

- Adding RH coupling allows negative contribution to ΔM_{s}

$$
\begin{aligned}
\mathcal{L}_{Z^{\prime}}^{\mathrm{eff}} \supset-\frac{1}{2 M_{Z^{\prime}}^{2}} & {\left[\left(\lambda_{23}^{Q}\right)^{2}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)^{2}+\left(\lambda_{23}^{d}\right)^{2}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)^{2}\right.} \\
& \left.+2 \lambda_{23}^{Q} \lambda_{23}^{d}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)+\text { h.c. }\right]
\end{aligned}
$$

