Vector-like quarks for $t \rightarrow c Z$, B physics

and M_{W} with automated 1-loop matching

ICCUB

Matthew Kirk ICCUB, Barcelona

Institut de Ciències del Cosmos
La Sapienza, Universita di Roma - 17 Jun 2022 (based on 2204.05962 with Crivellin, Kitahara, Mescia)

Motivations for vector-like fermions

- Appear in many BSM theories - GUTs, extra dimensions, composite Higgs
- Can explain $(g-2)_{\mu}, b \rightarrow s \ell \ell, C A A$
- Not currently ruled out by experiment (unlike heavy chiral fermions)

Vector-like fermions (VLFs)

- Left and right components have same gauge charges
- Allows to directly write a mass term in the Lagrangian
- Not limited to electroweak scale

VLFs

- But after EW symmetry breaking, can mix with the SM fermions
- So all VLFs cause shifts in many processes, already tree level!

Vector-like quarks (VLQs)

	u	d	q	H	\boldsymbol{U}	D	$\boldsymbol{Q}_{\mathbf{1}}$	Q_{5}	$\boldsymbol{Q}_{\mathbf{7}}$	T_{1}	T_{2}
$S U(3)_{C}$	3	3	3	1	3	3	3	3	3	3	3
$S U(2)_{L}$	1	1	2	2	1	1	2	2	2	3	3
$U(1)_{Y}$	$2 / 3$	$-1 / 3$	$1 / 6$	$1 / 2$	$2 / 3$	$-1 / 3$	$1 / 6$	$-5 / 6$	$7 / 6$	$-1 / 3$	$2 / 3$

- Lots of different representations, so can mix (and therefore affect) lots of quark processes

Vector-like quarks (VLQs)

- Lots of different representations, so can mix (and therefore affect) lots of quark processes
- Mix with 2nd/3rd gen LH down-type $=>b \rightarrow$ sll (e.g. 1403.1269)
- Mix with 1st/2nd gen up or down => CAA (e.g. 1906.02714)

VLQs at tree level

- Affect Z and W decays => lots of effects
- One interesting case: $t \rightarrow c Z$

VLQs for $t \rightarrow c Z$

- Tiny in SM

$$
-\mathcal{B} \sim 10^{-14}
$$

- BSM from VLQs

$$
-\mathcal{B} \sim \xi^{4} v^{4} / M^{4}
$$

- Exp limit $\sim 10^{-4}$

ATLAS-CONF-2021-049

VLQs for t->cZ

- BSM from VLQs
- $\mathcal{B} \sim \xi^{4} v^{4} / M^{4}$
- Exp limit $\sim 10^{-4}$ now

ATLAS - CONF - 2021-049

- Could be 10^{-5} from HL-LHC 2010. 05148
- 10^{-6} from FCC-hh

2010. 05148

	$\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$
Current LHC	$13[54]$
$\left(13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}\right)$	
HL-LHC	$3.13[59](0 \%)$
$\left(14 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$	$6.65[59](10 \%)$
HE-LHC	$0.522[59](0 \%)$
$\left(27 \mathrm{TeV}, 15 \mathrm{ab}^{-1}\right)$	$3.84[59](10 \%)$
FCC-hh	
$\left(100 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$	
FCC-hh	
$\left(100 \mathrm{TeV}, 10 \mathrm{ab}^{-1}\right)$	
FCC-hh	$0.0887[59](0 \%)$
$\left(100 \mathrm{TeV}, 30 \mathrm{ab}^{-1}\right)$	$3.54[59](10 \%)$

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass!

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass!

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass!

Calculating 1-loop effects

- Fixed order way
- Directly calculated every observable
- Large logs common e.g. B mixing: $\log \left(M / m_{t}\right)$

Calculating 1-loop effects

- EFT way
- VLQs have mass far above SM scale
- Exp limit is 1.3 TeV for 3rd gen quark couplings 1808.02343
- For 1st or 2nd gen, limit is similar 2006.07172
- So integrate them out and use the SMEFT

SMEFT

- Most general EFT which has the SM as the low energy limit
- Second half is the caveat
- "Factorises" calculations
- Match UV to SMEFT \rightarrow RG in SMEFT (\rightarrow match SMEFT to LEFT \rightarrow RG in LEFT) \rightarrow observables in terms of WCs

SMEFT

- "Factorises" calculations
- Match UV to SMEFT \rightarrow RG in SMEFT (\rightarrow match SMEFT to LEFT \rightarrow RG in LEFT) \rightarrow observables in terms of WCs
- Each step is independent

SMEFT

- Match UV to SMEFT
- Model dependent
- RG in SMEFT
- Alonso, Jenkins, Manohar, Trott
- Match SMEFT to LEFT
- Jenkins, Manohar, Stoffer \& Dekens, Stoffer
- RG in LEFT
- Jenkins, Manohar, Stoffer
- Plus higher orders in QCD
- Observables in terms of WCs
- Everyone

SMEFT

- Match UV to SMEFT
- Until recently, by hand
- RG in SMEFT:
- DsixTools, wilson
- Match SMEFT to LEFT
- RG in LEFT
- DsixTools, wilson
- Observables in terms of WCs
- flavio, EOS
- DsixTools, wilson

Matching to the SMEFT

- Tree level easy
- $C_{H q}, C_{u H}$
- 1 loop harder
- See hep-ph/9310302, 2003.12525, 2003.05936, 2107.12133, ...

VLQs @ 1-loop

- We spent about 3 months trying to calculate all the relevant coefficients
- (i.e. all the one we thought were relevant!)
- Lots learnt along the way

MatchMakerEFT

- Dec 2021 - paper on arXiv 2112.10787
- UV theory specified in terms of FeynRules .fr file
- Matching then proceeds totally automatically

VLQs in MatchMakerEFT

```
M$ClassesDescription = {
F[101] == {
```

[101] == \{
ClassName
Indices
SelfConjugate
QuantumNumbers
Mass
Fullname
\};
\};
M\$Parameters = \{
xiQ7 == \{
ParameterType
Indices
ComplexParameter
-> \{Index[Generation]\} -> True
\},
MQ7 == \{
ParameterType
ComplexParamete -> Internal, > False

```
(* ***************************** *)
(* ***** Lagrangian ***** *)
(* *************************** *)
gotoBFM={G[a__]->G[a]+GQuantum[a],Wi[a__]->Wi[a]+WiQuantum[a],B[a__]->B[a]+BQuantum[a]};
LHeavy := Block[{mu}
    +I*(VLQQ7bar.Ga[mu].DC[VLQQ7, mu])-MQ7*VLQQ7bar.VLQQ7
    ]/.gotoBFM;
LHeavylight := Block[{sp1,ii,jj,kk, aa,cc,ff1,yuk},
    yuk = -xiQ7[ff1] VLQQ7bar[sp1, ii, cc] UR[sp1, ff1, cc] Phi[ii]
    yuk+HC[yuk]
];
LNP := LHeavy + LHeavylight;
Ltot := LSM + LNP;
```


VLQs in MatchMakerEFT

- Quick, no supercomputer needed!
- All algebraic

VLQs in MatchMakerEFT

```
alpha0uG[mif1_, mif2_] }->\frac{*}{192MQ\mp@subsup{7}{}{2}\mp@subsup{\pi}{}{2}}\mathrm{ onelooporder
    (-3g3 xiQ7[mif2] xiQ7bar[fl1] yu[mif1, fl1]-g3 xiQ7[mif2] xiQ7bar[mif3] yu[mif1,mif3]),
alphaOuW[mif1_, mif2_] ->0, alphaOuB[mif1_, mif2_] ->0,
alpha0dG[mif1_, mif2_] }->0
alpha0dW[mif1_, mif2_] ->0,
lphaOdB[mif1 mif2 ] 0,
alpha0eW[mif1_, mif2_] }->0
alpha0eB[mif1_, mif2_] ->0,
alphaOHq1[mif1_, mif2_] }->\frac{1}{17280 MQ\mp@subsup{7}{}{2}\mp@subsup{\pi}{}{2}
onelooporder (135 xiQ7[fl1] xiQ7bar[fl2] yu[mif1, fl2] yubar[mif2,fl1] +
    270 Log[\frac{MQ7\mp@subsup{7}{}{2}}{\mp@subsup{\mu}{}{2}}]\times{QQ[fl1]\timesxiQ7bar[fl2] yu[mif1,fl2]\timesyubar[mif2,fl1] +
    135 xiQ7[fl1] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2, fl1] +
    135 xiQ7[mif3] xiQ7bar[fl1] yu[mif1, fl1] yubar[mif2,mif3] +
    180 xiQ7[mif4] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2,mif4]), alphaOHq3[mif1_, mif2_] )
|
    15 xiQ7[mif3] xiQ7bar[fl1] yu[mif1, fl1] yubar[mif2, mif3]
    20 xiQ7[mif4] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2,mif4]),
alphaOHu[mif1_, mif2_] }->\frac{xiQ7[mif2]\timesxiQ7bar[mif1]}{2 MQ\mp@subsup{7}{}{2}}+\frac{1}{34560MQ\mp@subsup{7}{}{4}\mp@subsup{\pi}{}{2}
    onelooporder (-2700 MQ72 xiQ7[fl1] xiQ7[mif2] xiQ7bar[fl1]\timesxiQ7bar [mif1] +
    3240MQ\mp@subsup{7}{}{2}\operatorname{Log}[\frac{MQ\mp@subsup{7}{}{2}}{\mp@subsup{\mu}{}{2}}]\times\textrm{xQQ7[fl1]\timesxiQ7[mif2] xiQ7bar[fl1]\timesxiQ7bar[mif1]-1620 MQ7 }\mp@subsup{}{}{2}\times\textrm{xiQ7 [MIF1]}
```


From UV to observables

- $t \rightarrow c Z$
- B mixing
- $b \rightarrow$ sll
- EWPO (including M_{W})

$$
t \rightarrow c Z
$$

- As discussed earlier

	$\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$
Current LHC	$13[54]$
$\left(13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}\right)$	
$\mathrm{HL}-\mathrm{LHC}$	$3.13[59](0 \%)$
$\left(14 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$	$6.65[59](10 \%)$
$\mathrm{HE}-\mathrm{LHC}$	$0.522[59](0 \%)$
$\left(27 \mathrm{TeV}, 15 \mathrm{ab}^{-1}\right)$	$3.84[59](10 \%)$
FCC-hh	
$\left(100 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$	
FCC-hh	
$\left(100 \mathrm{TeV}, 10 \mathrm{ab}^{-1}\right)$	
FCC-hh	$0.0887[59](0 \%)$
$\left(100 \mathrm{TeV}, 30 \mathrm{ab}^{-1}\right)$	$3.54[59](10 \%)$

B_{s} mixing

- 1-loop effect
- $\operatorname{Exp}=(17.741 \pm 0.020) \mathrm{ps}^{-1}{ }_{\text {hflav }}$ - pdg 2021
- $\mathrm{SM}=\left(18.3_{-1.2}^{+0.7}\right) \mathrm{ps}^{-1}$ 1909.11087

CKM treatment

- Theory prediction needs CKM elements
- CKM elements are determined from observables
- Observables might be affected by NP

CKM treatment

- (a) Solution

The CKM parameters in the SMEFT
1812.08163

Sébastien Descotes-Genon, Adam Falkowski, Marco Fedele, Martín González-Alonso, Javier Virto

- Used by smelli with these 4 observables:
$-\Delta M_{d} / \Delta M_{s,} B \rightarrow X_{c} e \nu, B \rightarrow \tau \nu, \frac{K \rightarrow \mu \nu}{\pi \rightarrow \mu \nu}$
- Thus these missing in fit
)

$$
b \rightarrow s \ell \ell
$$

- Data from $b \rightarrow$ sll decays disagrees with SM
- Good fit can include universal effects in C_{9} or C_{10}

EWPO

- Z and W decays, mostly measured by LEP
- Note that smelli uses the ($\alpha_{\mathrm{EM}}, M_{Z}, G_{F}$) SMEFT input scheme
- So M_{Z} is not an observable, but M_{W} is

M_{W} ?

- SM
- $(80.359 \pm 0.006) \mathrm{GeV}$
- PDG 2022
- $(80.377 \pm 0.012) \mathrm{GeV}$

M_{W} ?

- SM
- $(80.359 \pm 0.006) \mathrm{GeV}$
- PDG 2022
- $(80.377 \pm 0.012) \mathrm{GeV}$

M_{W} ?

- SM
- $(80.359 \pm 0.006) \mathrm{GeV}$
- PDG 2022
- $(80.377 \pm 0.012) \mathrm{GeV}$
- Naive combination
- (80.413 $\pm 0.008) \mathrm{GeV}$

Final technicalities

- We work in the down-basis, where Y_{d} is diagonal, Y_{u} is not $=>Y_{u}=V_{\mathrm{CKM}}^{\dagger} \cdot\left(0,0, y_{t}\right)$
- So FCNCs in the up sector are generated by CKM rotation, but not in down sector

Results

- Analysis of VLQ quantum numbers tells us 3 options to modify up-type Z couplings at tree level but only down-type at 1-loop
- i.e. to get large $t \rightarrow c Z$ but small $Z \rightarrow b b, B_{s}$ mixing, ...

	u	d	q	H	\boldsymbol{U}	D	$Q_{\mathbf{1}}$	Q_{5}	$Q_{\boldsymbol{7}}$	T_{1}	T_{2}
$S U(3)_{C}$	3	3	3	1	3	3	3	3	3	3	3
$S U(2)_{L}$	1	1	2	2	1	1	2	2	2	3	3
$U(1)_{Y}$	$2 / 3$	$-1 / 3$	$1 / 6$	$1 / 2$	$2 / 3$	$-1 / 3$	$1 / 6$	$-5 / 6$	$7 / 6$	$-1 / 3$	$2 / 3$

VLQ U

- ΔM_{s}
- $b \rightarrow$ sll
—— EWPO (with CDF M_{W})
- global
-.-. EWPO (without CDF M_{W})
....... Higgs decays
$=\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$

VLQ U B physics constraints

-Why aren't $b \rightarrow s \gamma$ or B_{s} mixing stronger?

VLQ U B physics constraints

- $b \rightarrow s \gamma$ is due to cancellation in C_{7} at EW scale
- SMEFT $C_{d B, d W}$ vs quark-loop when integrating out the W
- Both scale as ξ^{2} / M^{2}, so this is robust feature
- Opposite sign, about 50\% numerical size

VLQ U B physics constraints

- B_{s} mixing already cancels in SMEFT
- $C_{q q}$ has two parts
- ξ^{4} / M^{2} from VLQ-VLQ box
$-4 \frac{\xi^{2} y_{t}^{2} V_{t b} V_{t s}}{M^{2}} \ln \frac{M^{2}}{m_{t}^{2}}$ from VLQ-top box
- Cancellation accidental due to mass and coupling size

VLQ U B physics constraints

- B_{s} mixing already cancels in SMEFT
- $C_{q q}$ has two parts
- ξ^{4} / M^{2} from VLQ-VLQ box
$-4 \frac{\xi^{2} y_{t}^{2} V_{t b} V_{t s}}{M^{2}} \ln \frac{M^{2}}{m_{t}^{2}}$ from VLQ

- Cancellation accidental due to mass and coupling size

VLQ U

- $-\Delta M_{s}$
- $b \rightarrow$ sll
—— EWPO (with CDF M_{W})
- global
-. - EWPO (without CDF M_{W})
....... Higgs decays
$=\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$

VLQ Q1

- - ΔM_{s}
- $b \rightarrow$ sll
—— EWPO (with CDF M_{W})
- global
-•. EWPO (without CDF M_{W})
....... Higgs decays
$=\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$

VLQ Q7

- - ΔM_{s}
- $b \rightarrow$ sll
—— EWPO (with CDF M_{W})
- global
-•. EWPO (without CDF M_{W})
....... Higgs decays
$=\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$

Conclusions

- VLQs are an interesting BSM model for $t \rightarrow c Z$
- Correlation with B physics and M_{W} studied within SMEFT
- Automated 1-loop matching makes analysis easier

Backup

CKM treatment

The CKM parameters in the SMEFT

Sébastien Descotes-Genon, Adam Falkowski, Marco Fedele, Martín González-Alonso, Javier Virto

1812.08163

 observables. We discuss a few examples illustrating how our approach can be implemented in practice.

- smelli uses $\Delta M_{d} / \Delta M_{s,} B \rightarrow X_{c} e \nu, B \rightarrow \tau \nu, \underline{K} \rightarrow \mu \nu$
- VLQs give shift in gamma of 5 deg, Vub and Vcb of $\sim 1 \%$

LFU in bsll

- U VLQ generates (approx) C9=-C10/4 structure

2103. 13370

CAA

- Vud^ $^{\wedge} 2+$ Vus $^{\wedge} 2=1$

PDG Vud, Vus review

- PDG gives 2-3 sigma discrepancy

MatchMakerEFT

- RGEmaker mode:
- Complete RGEs for the ALP-SMEFT up to mass dimension-5 as computed in [64]. Exact agreement was found up to a typo in the original reference.
- RGEs for the purely bosonic and two-fermion operators in the Warsaw basis [66] as computed in [15-17] and implemented in DSixTools [28, 29]. Complete agreement was found.
- Matching mode:
- Scalar singlet. The complete matching up to one-loop order of an extension of the SM with a scalar singlet was recently completed in [67], after several partial attempts $[36,68]$. We have found complete agreement with the results in [67].
- Type-I see-saw model, as computed in [69]. Complete agreement was found.
- Scalar leptoquarks, as computed in [62]. We have found some minor differences that we are discussing with the authors.
- Charged scalar electroweak singlet, as computed in [70]. We agree with the result except for a sign in Eqs. (4.14), the terms with Pauli matrices in (4.15), (B.4) and (B.5) (the latter is the culprit of the opposite sign in terms with Pauli matrices) and a factor of 2 in Eq. (4.17) and of 4 in (B.7). We have contacted the authors about these differences.

MatchMakerEFT

- Two step matching:

1) Create model - quick, low cost
2) Match model - slow, high cost

$\mathrm{t} \rightarrow \mathrm{ch}$

	$\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$	$\operatorname{Br}(t \rightarrow c h) \times 10^{5}$
Current LHC $13[54]$ $99[55]$ $\left(13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}\right)$ HL-LHC $3.13[59](0 \%)$ $15[61]$ $\left(14 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$ $6.65[59](10 \%)$ $\mathrm{HE}-\mathrm{LHC}$ $0.522[59](0 \%)$ $7.7[60](0 \%)$ $\left(27 \mathrm{TeV}, 15 \mathrm{ab}^{-1}\right)$ $3.84[59](10 \%)$ $8.5[60](10 \%)$ FCC-hh $7.7[64]$ $\left(100 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right)$ $2.39[63](5 \%)$ FCC-hh $9.68[62](10 \%)$ $\left(100 \mathrm{TeV}, 10 \mathrm{ab}^{-1}\right)$ $0.96[60](0 \%)$ FCC-hh $0.0887[59](0 \%)$ $3.0[60](10 \%)$ $\left(100 \mathrm{TeV}, 30 \mathrm{ab}^{-1}\right)$ $3.54[59](10 \%)$ $3.3[64]$		

