Hints of new physics in flavour anomalies

Matthew Kirk

7th Joint Rome Workshop Laboratori Nazionali di Frascati 18th December 2018

Outline

- Basics of flavour physics
- History of flavour anomalies
- Introduction to meson mixing
 - How mixing and anomalies interact
- Introduction to meson lifetimes
 - How lifetimes and anomalies interact
- Future of anomalies

- What is flavour?
 - The different generations of quarks and leptons
- In the SM
 - Only difference is non universal Yukawa coupling to Higgs
 - generates different mass and flavour basis
- Means quarks couple with CKM, leptons with PMNS

- Why? To study these differences why different masses, why CKM / PMNS look the way they do, why different generations at all?
- Almost easy answer to why 3 generations:
 - Need at least 3 to generate CP violation
- But SM prediction for CP violation off by 10 orders of magnitude from observed baryon asymmetry

 Why? To study these differences – why different masses, why CKM / PMNS look the way they do, why different generations at all?

- Why? To study these differences why different masses, why CKM / PMNS look the way they do, why different generations at all?
- Almost easy answer to why 3 generations:
 - Need at least 3 to generate CP violation
- But SM prediction for CP violation off by 10 orders of magnitude from observed baryon asymmetry

- Why 1: CP violation (big picture)
- Why 2: Lots of flavour changing processes are rare in the SM
 - Easy to enhance, even with high scale NP
- Why 3: Study the SM and our tools
 - Flavour physics is paradigm of EFT Fermi theory

Flavour anomalies

Flavour anomalies: a history

- $P_{5}^{'}$ in 2013, $3.7\,\sigma$ local deviation
- R_K in 2014, $2.6\,\sigma$ local deviation
- R_{κ^*} in 2017, $2-2.5\,\sigma$ local deviation

$P_{5}^{'}$

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ & + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right], \end{split}$$

Flavour anomalies: a history

- $P_{5}^{'}$ in 2013, $3.7\,\sigma$ local deviation
- R_{K} in 2014, $2.6\,\sigma$ local deviation
- $R_{{\scriptscriptstyle K}^*}$ in 2017, $2{-}2.5\,\sigma$ local deviation

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}$$

Flavour anomalies: a history

- $P_{5}^{'}$ in 2013, 3.7σ local deviation
- R_K in 2014, $2.6\,\sigma$ local deviation
- $R_{{\scriptscriptstyle K^*}}$ in 2017,2 $-2.5\,\sigma$ local deviation

$$R_{K^{(*)}}$$

- Very nice as SM predictions are very precise O(1%)
 - Hadronic uncertainties cancel
 - Note: only in SM most NP predictions have large uncertanties
- $R_K(1 < q^2 < 6) = 1 \pm 0.01$
- $R_{K^*}(0.045 < q^2 < 1.1) = 0.92 \pm 0.02$
- $R_{K^*}(1.1 < q^2 < 6) = 1 \pm 0.01$

$$R_{D^{(*)}}$$

- $B \rightarrow D \ell \nu$ decays
- $R_{D^{(*)}} = \operatorname{Br}(B \rightarrow D^{(*)} \tau \nu) / \operatorname{Br}(B \rightarrow D^{(*)} \mu \nu)$
- Tree level, charged current decay
- Overall 4.1σ

$R_{D^{(*)}}$

$$R_{D^{(*)}}$$

- $B \rightarrow D \ell \nu$ decays
- $R_{D^{(*)}} = \operatorname{Br}(B \rightarrow D^{(*)} \tau \nu) / \operatorname{Br}(B \rightarrow D^{(*)} \mu \nu)$
- Tree level, charged current decay
- Overall 4.1σ
- Not going to talk about this more

Coherent anomalies

- All in $b \rightarrow s \mu \mu$
- EFT that describes these decays has 6 operators
- Can do global fits to all data, with one or more NP operator in play

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu} P_{R}b) F^{\mu\nu}, \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu} P_{L}b) F^{\mu\nu},$$

$$\mathcal{O}_{9\ell} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\gamma_{\mu} P_{L}b) (\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{9'\ell} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\gamma_{\mu} P_{R}b) (\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10\ell} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\gamma_{\mu} P_{L}b) (\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad \mathcal{O}_{10'\ell} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\gamma_{\mu} P_{R}b) (\bar{\ell}\gamma^{\mu}\gamma_{5}\ell).$$

23

Coherent anomalies

- Coherent in the sense that a single NP contribution $C_{9\mu}$ can provide a large improvement in the fit to the data
- With just C_{9u} , 5.8 σ (or 3.9 with only LFUV)

1704.05340

Meson Mixing

- Consider B, \overline{B} meson
- Definied by their quark content $\overline{b}d, b\overline{d}$
 - So they are flavour eigenstates
- But they can oscillate into one another

- Can imagine this mixing giving off-diagonal terms in a Schrödinger like equation
- To find mass eigenstates, have to diagonalise

- Get two new observables mass difference and width difference between the two mass eigenstates B_H, B_L (heavy and light)
- $\bullet \quad \Delta M = M_{B_H} M_{B_L}$
- $\Delta \Gamma = \Gamma_{B_H} \Gamma_{B_L}$

Calculating ΔM and $\Delta \Gamma$

- ΔM comes from $\Delta F=2$ operators
- $\Delta \Gamma$ from loop diagrams involving ΔF =1 operators
 - Because Λ Γ comes from lifetimes
 - Optical theorem $\langle B | Q | B \rangle = \text{Im} \sum_{X} \langle B | Q | X \rangle \langle X | Q | B \rangle$

Calculating ΔM and $\Delta \Gamma$

• In the SM, just one operator contributes to ΔM

$$- (\bar{b}^{\alpha} \gamma^{\mu} P_L s^{\alpha}) (\bar{b}^{\beta} \gamma_{\mu} P_L s^{\beta}),$$

• $\Delta\Gamma$ has many contributing operators

$$(\bar{b}^{\alpha}\gamma^{\mu}P_{L}s^{\alpha})(\bar{b}^{\beta}\gamma_{\mu}P_{L}s^{\beta}),$$

$$(\bar{b}^{\alpha}P_{L}s^{\alpha})(\bar{b}^{\beta}P_{L}s^{\beta}),$$

$$(\bar{b}^{\alpha}P_{L}s^{\beta})(\bar{b}^{\beta}P_{L}s^{\alpha}),$$

$$(\bar{b}^{\alpha}P_{L}s^{\alpha})(\bar{b}^{\beta}P_{R}s^{\beta}),$$

$$(\bar{b}^{\alpha}P_{L}s^{\beta})(\bar{b}^{\beta}P_{R}s^{\alpha}),$$

Calculating ΔM and $\Delta \Gamma$

- $\Delta M \sim C_i \langle Q_i \rangle$, where $\langle Q \rangle = \langle B | Q | B \rangle$
- C_i calculated in perturbation theory
- $\langle Q_i \rangle$ need non perturbative technique
 - Lattice QCD
 - Sum rules

$$\langle Q \rangle$$

- Note for later
- For historical reasons, $\langle Q \rangle$ generally parameterised as $\langle Q_i \rangle = f_B^2 M_B^2 B_i$
- B_i is bag parameter, contains all the "interesting" physics (assuming you know f_B alrady)

Why anomalies → mixing

Anomalies → mixing

- As said earlier, flavour anomalies strongly suggests NP in $\bar{s}b\bar{\ell}\ell$ operator
- Easy to see that two insertions of NP give $\bar{s}b\bar{s}b$
- So there is always a link: NP in $b \rightarrow s \ell \ell$ always give NP in B_s mixing

Mixing → anomalies

- Reverse is also true
- If we know about mixing, limits what can happen with anomalies
- So what do we know?

Status of B_s mixing

$\Delta M_{\rm S}$ circa 2016

• Experiment: $17.757 \pm 0.021 \,\mathrm{ps}^{-1}$

- SM: $18.3 \pm 2.7 \,\mathrm{ps}^{-1}$
 - Relies on FLAG 2013 for $f_B^{\ 2}B$

SM and experiment in agreement

$\Delta M_{\rm S}$ circa 2018

• Experiment: $17.757 \pm 0.021 \,\mathrm{ps}^{-1}$

- SM: $20.01 \pm 1.25 \,\mathrm{ps}^{-1}_{1712.06572}$
 - Relies on FLAG 2017 for $f_B^{\ 2}B$
 - Which is dominated by Fermilab/MILC results from 2016
- SM and experiment disagree at ~ $1.8~\sigma$

$\Delta M_{\scriptscriptstyle S}$ circa 2018

- SM and experiment disagree at ~ $1.8\,\sigma$
- On its own, not very interesting
- But large class of NP models give positive contribution to $\Delta\,M_s$
 - i.e. $\Delta M_s^{\mathrm{th}} \geq \Delta M_s^{\mathrm{SM}}$
 - So $1.8\,\sigma$ discrepancy only gets worse

(see e.g. 1602.04020 for example – CMFV)

Concrete example

- Look at how only $R_{K^{(*)}}$ and $B_{\!\scriptscriptstyle S}$ mixing restrict parameter space
- Imagine a new vector boson Z'

•
$$Z'_{\mu} \left(\lambda_{23}^Q \bar{s} \, \gamma^{\mu} P_L b + \lambda_{22}^L \bar{\mu} \, \gamma^{\mu} P_L \mu \right)$$

Concrete example

Concrete example

Strength of bounds

 Can show that factor of 5 change is generic – applies to any NP model with positive contribution

$$\frac{\Delta M_s^{\text{Exp}}}{\Delta M_s^{\text{SM}}} = \left| 1 + \frac{\kappa}{\Lambda_{\text{NP}}^2} \right| \qquad \frac{\Lambda_{\text{NP}}^{2017}}{\Lambda_{\text{NP}}^{2015}} = \sqrt{\frac{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2015}} - 1}{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2017}} - 1}} \simeq 5.2$$

• Should we believe the new result for $f_B^{\,2}B$?

- Range of different individual numbers
 - This is why we average
 - In this case, FLAG is the lattice averaging group

Source	$f_{B_{\mathcal{S}}}\sqrt{\hat{B}}$	$\Delta M_s^{ m SM}$
HPQCD14	$(247 \pm 12) \mathrm{MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13	$(262 \pm 10)\mathrm{MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 = FLAG13	$(266 \pm 18)\mathrm{MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17	$(274 \pm 8) \mathrm{MeV}$	$(20.01 \pm 1.25) \mathrm{ps}^{-1}$
Fermilab16	$(274.6 \pm 8.8) \mathrm{MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR	$\left(278^{+28}_{-24}\right)$ MeV	$\left(20.6^{+4.4}_{-3.4}\right) \text{ps}^{-1}$
HPQCD06	$(281 \pm 20) \mathrm{MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14	$(290 \pm 20)\mathrm{MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11	$(291 \pm 18)\mathrm{MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$
		1712.06572

Meson lifetimes

Quick recap on lifetimes

- Use optical theorem to calculate
 - Imaginary parts of B → B processes

Theory status

- Like mixing, requires hadronic matrix elements to make predictions
- Less well studied by lattice community
- Most recent results from 2001 proceedings
- But recent sum rule calculation also

Sum rules for bag parameters

Theory status

- Taking a ratio cancels off various uncertain parameters
- Best theory prediction: $\frac{\tau(B_s)}{\tau(B_d)} = 1.0005 \pm 0.0011$ (uncertainty of 0.1%!)

Lifetime ratio $\tau(B_s)/\tau(B_d)$

- What use is this for the flavour anomalies?
- Most obvious: $(\bar{s}b)(\bar{\ell}\ell)$ operator contributes to $B_s \rightarrow \ell \ell$ decay rate \rightarrow alters lifetime ratio
- However supressed by $(m_{\mu}/m_b)^2 \simeq 10^{-4}$
- But what about more general NP?

Lifetime ratio $\tau(B_s)/\tau(B_d)$

- While LFUV NP is most interesting, seems likely (and fits also support) that there is also contribution that is LFU
 - See e.g. 1704.05446, 1809.08447

	Best-fit point	1 σ CI	$2 \sigma \text{ CI}$
$\mathcal{C}^{ ext{V}}_{9\mu}$	-1.57	[-2.14, -1.06]	[-2.75, -0.58]
$\mathcal{C}_9^{ ext{U}}$	0.56	[0.01, 1.15]	[-0.51, 1.78]
$\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.42	[-0.57, -0.27]	[-0.72, -0.15]
$\mathcal{C}_9^{ ext{U}}$	-0.67	[-0.90, -0.42]	[-1.11, -0.16]

TABLE V. 2D hypotheses. Top: Scenario 7: LFUV and LFU NP in $C_9^{\rm NP}$ only. Bottom: Scenario 8: $C_{9\mu}^{\rm V} = -C_{10\mu}^{\rm V}$ and $C_9^{\rm U}$ only. $1809 \cdot 08447$

Lifetime ratio $\tau(B_s)/\tau(B_d)$

- In SM, about half of (LFU) contribution to C_0 comes from charm loops b.
- So what if NP appears in $(\bar{s}b)(\bar{c}c)$?
- Now lifetime contribution only suppressed by $(m_c/m_b)^2 \simeq 0.15$

NP in $(\bar{s}b)(\bar{c}c)$

- Gives rise to correlated effects in several observables
 - Nice way to test, and allows to discriminate between various Dirac structures
- Study in 1701.09183 (+ upcoming $\lesssim 1$ month)

NP in $(\bar{s}b)(\bar{c}c)$

Future of flavour anomalies

When will we know?

- Currently, no single measurement has a $5\,\sigma$ deviation from SM
 - i.e. no "discovery"
- When might we expect this to happen?
- (Disclaimer not an experimentalist, numbers taken blindly from their talks)

$\mathsf{LFUV} - R_{K^{(*)}}$

- Now: uncertainty on $R_{K^{(*)}} \sim 12\%$ (run 1 data)
- In progress, update to R_K with run 2 data
 - If central value remains the same, 7% uncertainty
- LHCb 2025: Uncertainty 3-4%
 - If same central value $\rightarrow 10 \, \sigma$ deviation
- Belle II should be able to confirm

$\mathsf{LFUV} - R_{K^{(*)}}$

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				
$R_K \ (1 < q^2 < 6 \ \text{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ \ 275$	0.031	0.032	0.008
R_{ϕ},R_{pK},R_{π}		0.08, 0.06, 0.18	_	0.02,0.02,0.05

LHCB-PUB-2018-009

Angular observables - $P_5^{'}$

Angular observables - $P_5^{'}$

• By ~2035 (LHCb upgrade 2), can use $P_5^{'}$ to easily distinguish between various NP scenarios.

Angular observables - $P_5^{'}$

- Red is $C_9^{\mu} = -C_{10}^{\mu} = -0.7$
- Green is $C_9^{\mu} = -1.4$
- Blue is SM
- 3σ contours

Summary

- Flavour anomalies possibly most exciting signs of NP at the moment
 - Unexpected area: LFUV
- Meson mixing very important in constraining BSM models
 - Lattice results the key
- But soon we will know for sure
 - Then a variety of other flavour observables (e.g. lifetimes) will play their part

Backup

Sum rules

68

Sum rules

Sum rules

FLAG discrepancy

- FLAG 2017 average: $f_{B_s}\sqrt{\hat{B}}$ =274±8 MeV
- But they also give
 - $-f_{B_s} = 228.4 \pm 3.7 \,\mathrm{MeV}$
 - $-\hat{B}=1.35\pm0.06$
- Naive combination: $f_{B_s}\sqrt{\hat{B}}=265\pm7\,\mathrm{MeV}$

V_{cb} dependence

