Review of New Physics in nonleptonic tree level B meson decays

Matthew Kirk

ICCUB, Barcelona

Institut de Ciències del Cosmos

Status and prospects of Non-leptonic B meson decays 2nd Jun 2022

Summary

- Exp. vs SM
 - Talked about what we mean by SM
- For the most part, SM agrees decently
 - But not entirely, e.g. $B \to DK$, $B \to D\pi$
 - Other places where large errors make it hard to tell

Can it be NP?

 Typically think of BSM competing with SM loop level

-
$$G_F/4\pi^2 \approx 1/(2 \,\mathrm{TeV})^2$$

 But various places where NP can be hiding in plain sight

Topics

- 1) NP in C_1 or C_2 ?
 - i. CKM angle γ
 - ii. $\Delta \Gamma_d$
- 2) Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$?

NP in C_1 or C_2 ?

- $Q_1^{q,pp'} = (\bar{p}_\beta \gamma^\mu (1 \gamma^5) b_\alpha) (\bar{q}_\alpha \gamma_\mu (1 \gamma^5) p'_\beta)$
- $Q_2^{q,pp'} = (\bar{p}_{\alpha}\gamma^{\mu}(1-\gamma^5)b_{\alpha})(\bar{q}_{\alpha}\gamma_{\mu}(1-\gamma^5)p'_{\alpha})$
- In general, C₂ is colour enhanced relative to C₁ (i.e. has factor of 3 larger coefficient)

Flavour universal scenario

- All flavours turned on
- $C_i^{q,pp'} = C_i$ for all q, p, p'
- Should be most constrained scenario

1912.07621

Flavour universal scenario

- All flavours turned on
- $C_i^{q,pp'} = C_i$ for all q, p, p'
- Should be most constrained scenario
- C_2 strongly constrained, but lots of room in C_1

Consequences of NP in C_1

- So if large BSM C_1 is allowed, where else would this show up?
 - i. CKM angle γ
 - ii. $\Delta \Gamma_d$

i. CKM angle γ

- Experimental progress impressive
 - 2014: $(73 \pm 7)^{\circ}$, 2021: $(66 \pm 3)^{\circ}$
- SM theory side under control
 - Unknown hadronic matrix elements don't affect the weak phase, 10^{-4} SM uncertainty (from new weak phases at 1-loop) 1308.5663 1412.3173

$\mathsf{BSM} \text{ in } \gamma$

- Imaginary NP in $(\overline{b}u)(\overline{c}s)$ and $(\overline{b}c)(\overline{u}s)$ can give large shift
 - (5 10)°, now bigger
 than experimental error
- Feeds into other observables

$\mathsf{BSM} \text{ in } \gamma$

• Feeds into other observables

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.93 \pm 0.04) \times 10^{-11} \left[\frac{|V_{cb}|}{42.6 \times 10^{-3}} \right]^4 \left[\frac{\sin \gamma}{\sin(64.6^\circ)} \right]^2 \left[\frac{\sin \beta}{\sin(22.2^\circ)} \right]^2,$$

$$\mathcal{B}(B_d \to \mu^+ \mu^-)_{\rm SM} = (1.02 \pm 0.02) \times 10^{-10} \left[\frac{F_{B_d}}{190.0 \text{MeV}} \right]^2 \left| \frac{V_{td}}{8.67 \times 10^{-3}} \right|^2 \bar{R}_d$$

$$\Delta M_d = 0.5065/\text{ps} \left[\frac{\sqrt{\hat{B}_{B_d}} F_{B_d}}{210.6 \text{MeV}} \right]^2 \left[\frac{S_0(x_t)}{2.307} \right] \left[\frac{|V_{td}|}{8.67 \times 10^{-3}} \right]^2 \left[\frac{\eta_B}{0.5521} \right]$$

$$2204.10337$$

ii. $\Delta \Gamma_d$ enhancement

- $\Delta \Gamma_d$ hard to measure
 - $\Delta \Gamma_d / \Gamma_d$ has 1000% error (compare with $\Delta \Gamma_s / \Gamma_s$ error of 6%)
- Using B_d lifetime, get $\Delta \Gamma_d = (-1.3 \pm 6.6) \times 10^{-3}$
- Consistent with SM: $(2.4 \pm 0.4) \times 10^{-3}$

$\Delta \Gamma_d$ enhancement

- Using B_d lifetime, get $\Delta \Gamma_d = (-1.3 \pm 6.6) \times 10^{-3}$
- Consistent with SM: $(2.4 \pm 0.4) \times 10^{-3}$
- Large effects in C_1 can give 20% change to SM prediction
- Not enough to be clearly visible as a BSM signal

Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$?

 $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$

- NP in $(\bar{b}s)(\bar{c}c)$ can generate $C_9^{\rm LFU}$
- Large RG enhancement:

 $C_9(m_b) = 8.5C_1(M_W) + 2C_2(M_W)$

 $(\bar{b}s)(\bar{c}c)$ for C_{q}^{LFU}

- NP in $(\bar{b}s)(\bar{c}c)$ can generate $C_9^{\rm LFU}$
- Large RG enhancement:

 $C_9(m_b) = 8.5C_1(M_W) + 2C_2(M_W)$

 $(bs)(\bar{c}c)$ for $C_9^{\rm LFU}$

• Real $C_9^{
m LFU}$ + C_9^{μ} consistent with data

22

Complex $(\bar{b}s)(\bar{c}c)$ for C_9^{μ}

- Real $C_9^{
 m LFU}$ + C_9^{μ} consistent with data
- Complex C_9^{μ} consistent with data

Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$?

- NP in $(\bar{b}s)(\bar{c}c)$ can generate $C_9^{\rm LFU}$
- Real $C_9^{\rm LFU}$ + C_9^{μ} consistent with data
- Complex C_9^{μ} consistent with data
- Does the $b \to s\ell\ell$ data agree with real C_9^{μ} + complex $C_9^{\rm LFU}$?

Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$

- NP in $C_{1,2}$ SM coefficients gives large effect in C_9
- CPV constrained by $B \rightarrow J/\psi K$

- 3 main $B \rightarrow J/\psi K$ observables:
 - Br, $S_{J/\psi K}$ ($A_{\rm CP}^{\rm mix}$), $C_{J/\psi K}$ ($A_{\rm CP}^{\rm dir}$)
- BSM theoretical prediction needs 3 hadronic inputs
 - $|\langle O_1 \rangle|, \operatorname{Re}(r_{21}), \operatorname{Im}(r_{21}) \ (r_{i1} = \langle O_i \rangle / \langle O_1 \rangle)$
- Can fit to data and still constrain $C_{1,2}$

- $|\langle O_1 \rangle| = (1.23 \pm 0.18) \,\mathrm{GeV}^3$ (includes $1/N_c^2$ corrections)
- $\operatorname{Re}(r_{21})$: O(1) corrections to NF
- $\operatorname{Im}(r_{21})$: O(1) corrections to NF

- $|\langle O_1 \rangle| = (1.23 \pm 0.18) \,\mathrm{GeV}^3$
- $\operatorname{Re}(r_{21}) \approx 1/3$
- $\operatorname{Im}(r_{21}) \approx 0$

Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$

- CPV in C_1 can match $B \rightarrow J/\psi K$ data
- NP in C_1 coefficient gives large effect in $C_9^{\rm LFU}$
- The $b \to s\ell\ell$ data agrees with real C_9^{μ} + complex $C_9^{\rm LFU}$

Complex $(\bar{b}s)(\bar{c}c)$ for $C_9^{\rm LFU}$

Conclusions

- Large room for (CPV) NP in C_1 even in the most constrained (flavour universal) case
 - CPV in $C_1^{s,cc}$ can generate a LFU C_9 and make NF work for $B \to J/\psi K$
 - Potentially large effects (5°+) in CKM $\gamma\,$ extraction from $B \to DK$