Review of New Physics in nonleptonic tree level B meson decays

 Matthew KirkICCUB, Barcelona

ERe Universitatide
IIIII BARCELONA
Institut de Ciències del Cosmos
Status and prospects of Non-leptonic B meson decays
2nd Jun 2022

Summary

- Exp. vs SM
- Talked about what we mean by SM
- For the most part, SM agrees decently
- But not entirely, e.g. $B \rightarrow D K, B \rightarrow D \pi$
- Other places where large errors make it hard to tell

Can it be NP?

- Typically think of BSM competing with SM loop level
- $G_{F} / 4 \pi^{2} \approx 1 /(2 \mathrm{TeV})^{2}$
- But various places where NP can be hiding in plain sight

Topics

1) NP in C_{1} or C_{2} ?
i. CKM angle γ
ii. $\Delta \Gamma_{d}$
2) Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU} ?

NP in C_{1} or C_{2} ?

NP in the EFT

- $Q_{1}^{q, p p^{\prime}}=\left(\bar{p}_{\beta} \gamma^{\mu}\left(1-\gamma^{5}\right) b_{\alpha}\right)\left(\bar{q}_{\alpha} \gamma_{\mu}\left(1-\gamma^{5}\right) p_{\beta}^{\prime}\right)$
- $Q_{2}^{q, p p^{\prime}}=\left(\bar{p}_{\alpha} \gamma^{\mu}\left(1-\gamma^{5}\right) b_{\alpha}\right)\left(\bar{q}_{\alpha} \gamma_{\mu}\left(1-\gamma^{5}\right) p_{\alpha}^{\prime}\right)$
- In general, C_{2} is colour enhanced relative to C_{1} (i.e. has factor of 3 larger coefficient)

NP in the EFT

1912.07621

NP in the EFT

1912. 07621

NP in the EFT

Flavour universal scenario

- All flavours turned on
- $C_{i}^{q, p p^{\prime}}=C_{i}$ for all q, p, p^{\prime}
- Should be most constrained scenario

NP in the EFT

Universal Fit

Flavour universal scenario

- All flavours turned on
- $C_{i}^{q, p p^{\prime}}=C_{i}$ for all q, p, p^{\prime}
- Should be most constrained scenario
- C_{2} strongly constrained, but lots of room in C_{1}

Consequences of NP in C_{1}

- So if large BSM C_{1} is allowed, where else would this show up?
i. CKM angle γ
ii. $\Delta \Gamma_{d}$

i. CKM angle γ

- Experimental progress impressive
- 2014: $(73 \pm 7)^{\circ}, 2021:(66 \pm 3)^{\circ}$
- SM theory side under control
- Unknown hadronic matrix elements don't affect the weak phase, $10^{-4} \mathrm{SM}$ uncertainty (from new weak phases at 1-loop) ${ }_{1308.5663}$

BSM in γ

- Imaginary NP in $(\bar{b} u)(\bar{c} s)$ and $(\bar{b} c)(\bar{u} s)$ can give large shift
- (5-10) ${ }^{\circ}$, now bigger than experimental error
- Feeds into other observables

1912.07621

BSM in γ

- Feeds into other observables

$$
\begin{aligned}
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) & =(2.93 \pm 0.04) \times 10^{-11}\left[\frac{\left|V_{c b}\right|}{42.6 \times 10^{-3}}\right]^{4}\left[\frac{\sin \gamma}{\sin \left(64.6^{\circ}\right)}\right]^{2}\left[\frac{\sin \beta}{\sin \left(22.2^{\circ}\right)}\right]^{2}, \\
\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}} & =(1.02 \pm 0.02) \times 10^{-10}\left[\frac{F_{B_{d}}}{190.0 \mathrm{MeV}}\right]^{2}\left|\frac{V_{t d}}{8.67 \times 10^{-3}}\right|^{2} \bar{R}_{d} \\
\Delta M_{d} & =0.5065 / \mathrm{ps}\left[\frac{\sqrt{\hat{B}_{B_{d}}} F_{B_{d}}}{210.6 \mathrm{MeV}}\right]^{2}\left[\frac{S_{0}\left(x_{t}\right)}{2.307}\right]\left[\frac{\left|V_{t d}\right|}{8.67 \times 10^{-3}}\right]^{2}\left[\frac{\eta_{B}}{0.5521}\right]
\end{aligned}
$$

ii. $\Delta \Gamma_{d}$ enhancement

- $\Delta \Gamma_{d}$ hard to measure
- $\Delta \Gamma_{d} / \Gamma_{d}$ has 1000\% error (compare with $\Delta \Gamma_{s} / \Gamma_{s}$ error of 6\%)
- Using B_{d} lifetime, get $\Delta \Gamma_{d}=(-1.3 \pm 6.6) \times 10^{-3}$
- Consistent with SM: $(2.4 \pm 0.4) \times 10^{-3}$

$\Delta \Gamma_{d}$ enhancement

- Using B_{d} lifetime, get $\Delta \Gamma_{d}=(-1.3 \pm 6.6) \times 10^{-3}$
- Consistent with SM: $(2.4 \pm 0.4) \times 10^{-3}$
- Large effects in C_{1} can give 20% change to SM prediction
- Not enough to be clearly visible as a BSM signal

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU} ?

$(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

- NP in $(\bar{b} s)(\bar{c} c)$ can generate C_{9}^{LFU}
- Large RG enhancement:

$$
\begin{aligned}
C_{9}\left(m_{b}\right)= & 8.5 C_{1}\left(M_{W}\right) \\
& +2 C_{2}\left(M_{W}\right)
\end{aligned}
$$

$(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

- NP in $(\bar{b} s)(\bar{c} c)$ can generate C_{9}^{LFU}
- Large RG enhancement:

$$
\begin{aligned}
C_{9}\left(m_{b}\right)= & 8.5 C_{1}\left(M_{W}\right) \\
& +2 C_{2}\left(M_{W}\right)
\end{aligned}
$$

$(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

- Real $C_{9}^{\mathrm{LFU}}+C_{9}^{\mu}$ consistent with data

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{μ}

- Real $C_{9}^{\mathrm{LFU}}+C_{9}^{\mu}$ consistent with data
- Complex C_{9}^{μ} consistent with data

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU} ?

- NP in $(\bar{b} s)(\bar{c} c)$ can generate C_{9}^{LFU}
- Real $C_{9}^{\mathrm{LFU}}+C_{9}^{\mu}$ consistent with data
- Complex C_{9}^{μ} consistent with data
- Does the $b \rightarrow$ sll data agree with real $C_{9}^{\mu}+$ complex C_{9}^{LFU} ?

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU} !

- NP in ($\bar{b} s$
- Real $C_{9}^{\mathrm{L}]}$
- Complex
- Does the complex

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

- NP in $C_{1,2} \mathrm{SM}$ coefficients gives large effect in C_{9}
- CPV constrained by $B \rightarrow J / \psi K$

CPV constrained by $B \rightarrow J / \psi K$

- 3 main $B \rightarrow J / \psi K$ observables:
- $\mathrm{Br}, S_{J / \psi K}\left(A_{\mathrm{CP}}^{\text {mix }}\right), C_{J / \psi K}\left(A_{\mathrm{CP}}^{\mathrm{dir}}\right)$
- BSM theoretical prediction needs 3 hadronic inputs
$-\left|\left\langle O_{1}\right\rangle\right|, \operatorname{Re}\left(r_{21}\right), \operatorname{Im}\left(r_{21}\right) \quad\left(r_{i 1}=\left\langle O_{i}\right\rangle /\left\langle O_{1}\right\rangle\right)$
- Can fit to data and still constrain $C_{1,2}$

CPV constrained by $B \rightarrow J / \psi K$

- $\left|\left\langle O_{1}\right\rangle\right|=(1.23 \pm 0.18) \mathrm{GeV}^{3}$ (includes $1 / N_{c}^{2}$ corrections)
- $\operatorname{Re}\left(r_{21}\right): ~ O(1)$ corrections to NF
- $\operatorname{Im}\left(r_{21}\right): ~ O(1)$ corrections to NF

CPV constrained by $B \rightarrow J / \psi K$

$\operatorname{Re} \Delta C_{1}\left(M_{W}\right)$
Update of 1910.12924 29

CPV constrained by $B \rightarrow J / \psi K$

- $\left|\left\langle O_{1}\right\rangle\right|=(1.23 \pm 0.18) \mathrm{GeV}^{3}$
- $\operatorname{Re}\left(r_{21}\right) \approx 1 / 3$
- $\operatorname{Im}\left(r_{21}\right) \approx 0$

CPV constrained by $B \rightarrow J / \psi K$

Update of 1910.12924 31

CPV constrained by $B \rightarrow J / \psi K$

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

- CPV in C_{1} can match $B \rightarrow J / \psi K$ data
- NP in C_{1} coefficient gives large effect in C_{9}^{LFU}
- The $b \rightarrow$ sll data agrees with real $C_{9}^{\mu}+$ complex C_{9}^{LFU}

Complex $(\bar{b} s)(\bar{c} c)$ for C_{9}^{LFU}

Conclusions

- Large room for (CPV) NP in C_{1} even in the most constrained (flavour universal) case
- CPV in $C_{1}^{s, c c}$ can generate a LFU C_{9} and make NF work for $B \rightarrow J / \psi K$
- Potentially large effects ($5^{\circ}+$) in CKM γ extraction from $B \rightarrow D K$

