BSM in Charming operators?

Matthew Kirk

La Sapienza, Rome

Nikhef theory seminar — 27 Feb 2020 (based on 1701.09183, 1910.12924 with S. Jäger, A. Lenz, K. Leslie)

Motivation

- SM has two $(\bar{s}b)(\bar{c}c)$ operators
 - Turn up in lots of places
 - $\Delta\Gamma_s$
 - $\tau(B_s)/\tau(B_d)$
 - $B \to X_s \gamma$
 - ...

Motivation

- If you're into anomalies...
- Half of the C_9 coefficient in the SM comes from the SM $(\bar{s}b)(\bar{c}c)$ operator $Q_9 = (\bar{s}P_L b)(\bar{\ell}\gamma^{\mu}\ell)$
 - Close charm loop, emit photon
 - Strong RG effect enhances the effect

New physics?

- Beyond the SM, what other operators can appear?
- And what effect could they have? / How much can we constrain their Wilson coefficients?

Complete basis set

- First task: enumerate the basis
- 20 operators (2 SM, 18 BSM)
 - Dirac structures: 1 SM, 4 BSM
 - x 2 for colour
 - x 2 for chirality

Complete basis set

$$\mathcal{H}_{\text{eff}}^{cc} = \frac{4G_F}{\sqrt{2}} V_{cb} V_{cs}^* \sum_i C_i^c Q_i^c + C_i^{\prime c} Q_i^{\prime c}$$

$$Q_1^c = (\bar{c}_L^i \gamma_\mu b_L^j)(\bar{s}_L^j \gamma^\mu c_L^i)$$

$$Q_2^c = (\bar{c}_L^i \gamma_\mu b_L^i)(\bar{s}_L^j \gamma^\mu c_L^j)$$

$$Q_3^c = (\bar{c}_R^i b_L^j)(\bar{s}_L^j c_R^i),$$

$$Q_4^c = (\bar{c}_R^i b_L^i)(\bar{s}_L^j c_R^j),$$

 $Q_6^c = (\bar{c}_B^i \gamma_\mu b_B^i)(\bar{s}_L^j \gamma^\mu c_L^j)$

$$Q_5^c = (\bar{c}_R^i \gamma_\mu b_R^j)(\bar{s}_L^j \gamma^\mu c_L^i)$$

$$Q_8^c = (\bar{c}_L^i b_R^i)(\bar{s}_L^j c_R^j)$$

$$Q_7^c = (\bar{c}_L^i b_R^j)(\bar{s}_L^j c_R^i)$$

 $Q_9^c = (\bar{c}_L^i \sigma_{\mu\nu} b_R^j)(\bar{s}_L^j \sigma^{\mu\nu} c_R^i)$

$$Q_{10}^c = (\bar{c}_L^i \sigma_{\mu\nu} b_R^i)(\bar{s}_L^j \sigma^{\mu\nu} c_R^j)$$

- RG evolution
- Necessary as we assume NP arises at weak scale or above
- But observables are calculated at b scale

$$Q_{7\gamma} = \frac{em_b}{16\pi^2} (\bar{s}\sigma^{\mu\nu}P_R b) F^{\mu\nu} , \ Q_{9V} = \frac{\alpha}{4\pi} (\bar{s}P_L b) (\bar{\ell}\gamma^{\mu}\ell)$$

• What is new?

$$-Q_{3,4}^c \to Q_{7\gamma}, Q_{9V}$$

- Mixing into photon penguin arises at 2 loops
- Done for our first paper in 2017

- What is new?
 - $Q_{3,4}^c o Q_{7\gamma}, Q_{9V}$ arise at 2 loops
 - Done for our first paper in 2017
- Everything else already known somewhere

Observables

- $\tau(B_s)/\tau(B_d)$
- $\Delta\Gamma_s$
- $B \to X_s \gamma$
- $B \to J/\psi K$

$\Delta\Gamma_s$

- ullet B_s and $ar{B}_s$ can mix
- New mass eigenstates
- Different masses and widths

$\Delta\Gamma_s$

 HQE expands the non-local loop in local operators

$$\Delta\Gamma_s$$

Calculated within HQE

$$\bullet \ \Gamma_{12} = \frac{\Lambda^3}{m_b^3} \Gamma_3 + \frac{\Lambda^4}{m_b^4} \Gamma_4 + \dots$$

•
$$\Gamma_i = \left[\Gamma_i^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_i^{(1)} + \frac{\alpha_s^2}{(4\pi)^2} \Gamma_i^{(2)} + \ldots \right] \langle O^{d=i+3} \rangle$$

For summary of what's known, see talk by Lenz (1809.09452)

$$\Delta\Gamma_s$$

- Calculated within HQE
- SM: $\Delta\Gamma_s = (0.088 \pm 0.020) \,\mathrm{ps}^{-1}$
- Exp: $\Delta\Gamma_s = (0.088 \pm 0.006) \,\mathrm{ps}^{-1}$

$$\tau(B_s)/\tau(B_d)$$

- Theory prediction: $1 + SU(3)_F$ breaking corrections
- Expected to be $\mathcal{O}(m_d/m_s) \approx 1\%$

$$\tau(B_s)/\tau(B_d)$$

- Most recent prediction:
 - SM: 1.0006 ± 0.0025
 - (MK, Lenz, Rauh 1711.02100)
 - Exp: 0.993 ± 0.004
 - (HFLAV for PDG 2018)
- (Side note: new ATLAS result for $au(B_s)$ (2001.07115) is $\sim 2.5\,\sigma$ below HFLAV => ratio = 0.982!)

$$\tau(B_s)/\tau(B_d)$$

Tremendous improvement from experiment over time

$\tau(B_s)/\tau(B_d)$

$$B \to X_s \gamma$$

- Radiative decay, quark level is $b \to s \gamma$
- SM known at NNLO in QCD
- In SM, $(\bar{s}b)(\bar{c}c)$ contributes at 2-loop
 - Attach gluon to charm loop to get chirality flip

$$B \to X_s \gamma$$

- SM known at NNLO in QCD
- SM: $\mathcal{B}(B \to X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$
- Exp: $\mathcal{B}(B \to X_s \gamma) = (3.32 \pm 0.15) \times 10^{-4}$

$$B \to J/\psi K$$

- So-called golden mode
 - Amplitude contains only a single
 CKM structure
 - Taking ratio of CP conjugate modes cancels out strong phase, allowing us direct access to CKM factor
- Determination of β CKM triange angle

$$B \to J/\psi K$$

•
$$A_{CP}(t) = \frac{\Gamma\left[\bar{B}_d(t) \to J/\psi K_S\right] - \Gamma\left[B_d(t) \to J/\psi K_S\right]}{\Gamma\left[\bar{B}_d(t) \to J/\psi K_S\right] + \Gamma\left[B_d(t) \to J/\psi K_S\right]}$$

= $S_{J/\psi K_S} \sin(\Delta M_d t) - C_{J/\psi K_S} \cos(\Delta M_d t)$

- S is mixing induced, C is direct CP asymmetry
- In SM, $S \sim \sin 2\beta$
- Also $\mathcal{B}(B \to J/\psi K)$
- More later...

- For those interested in using our results
 - E.g. if your favourite NP model generates $(\bar{s}b)(\bar{c}c)$

$$\frac{\tau(B_s)^{\text{BSM}}}{\tau(B_d)^{\text{BSM}}} = \frac{G_F^2 m_b^2 M_{B_s} f_{B_s}^2 \tau(B_s)^{\text{exp}}}{4\pi} N_c \sqrt{1 - z} \left| \lambda_c \right|^2$$

$$\times \left[\sum_{i=1}^{20} \sum_{j=1}^{20} C_i^c(C_j^c)^* \Gamma(i,j) - \sum_{i=1}^2 \sum_{j=1}^2 C_i^{c,\text{SM}} (C_j^{c,\text{SM}})^* \Gamma(i,j) \right]$$

$$\Gamma(1,1) = \frac{1}{12} \left[2(z+2)B_2' + (z-4)B_1 \right] , \qquad \Gamma(1,3) = \frac{1}{8}zB_1 , \qquad \Gamma(1,5) = -\frac{1}{2}\sqrt{z}B_2' ,$$

$$\Gamma(1,9) = \frac{1}{2}\sqrt{z}(4B_2' - B_1) , \qquad \qquad \Gamma(1,11) = -\frac{1}{4}zB_3 , \qquad \Gamma(1,7) = \frac{1}{8}\sqrt{z}B_1 ,$$

$$\Gamma(1,13) = -\frac{1}{24} \left[2(z+2)B_4' + (z-4)B_3 \right] , \qquad \Gamma(1,15) = \frac{1}{2}\sqrt{z}B_4' , \qquad (3.9)$$

$$\Gamma(1,17) = \frac{1}{8}\sqrt{z} \left[B_3 - 2B_4' \right] , \qquad \qquad \Gamma(1,19) = -\frac{1}{2}\sqrt{z} \left[2B_4' + B_3 \right] .$$

$$\Gamma(3,3) = \frac{1}{4}\Gamma(1,1), \qquad \Gamma(3,7) = \frac{1}{16}\sqrt{z}\left(2B_2' - B_1\right), \quad \Gamma(3,5) = \frac{1}{2}\Gamma(1,5),$$

$$\Gamma_{12}^{c\bar{c}} = \frac{G_F^2 \lambda_c^2 m_b^2 M_{B_s} f_{B_s}^2}{12\pi} \sqrt{1 - z} \left[8G(z)B + F(z)\tilde{B}_S' \right]$$

$$F(z) = \left(1 + \frac{z}{2}\right) \left[\frac{C_1^{c,2} - (C_1^{c,\text{SM}})^2}{2} + \frac{C_1^c C_2^c - C_1^{c,\text{SM}} C_2^{c,\text{SM}}}{3} - \frac{C_2^{c,2} - (C_2^{c,\text{SM}})^2}{6} + \frac{C_3^{c,2}}{8} + \frac{C_3^c C_4^c}{12} - \frac{C_4^{c,2}}{24} \right]$$

$$- \left(1 - \frac{z}{2}\right) \left[18 C_5^c C_9^c + 6 (C_5^c C_{10}^c + C_6^c C_9^c - C_6^c C_{10}^c) + \frac{3}{2} C_5^c C_7^c + \frac{C_5^c C_8^c + C_6^c C_7^c - C_6^c C_8^c}{2} \right]$$

$$+ \sqrt{z} \left[6 C_1^c C_9^c + 2 C_1^c C_{10}^c + 2 C_2^c C_9^c - 2 C_2^c C_{10}^c - \frac{3}{2} (C_1^c C_5^c - C_3^c C_9^c) - \frac{3}{4} C_3^c C_5^c + \frac{3}{8} C_3^c C_7^c \right]$$

$$- \frac{C_1^c C_6^c + C_2^c C_5^c - C_2^c C_6^c - C_3^c C_{10}^c - C_4^c C_9^c + C_4^c C_{10}^c}{2} - \frac{C_3^c C_6^c + C_4^c C_5^c - C_4^c C_6^c}{4} + \frac{C_3^c C_8^c + C_4^c C_7^c - C_4^c C_8^c}{8} \right]$$

$$+ z \left[15 C_9^{c,2} + 10 C_9^c C_{10}^c - 5 C_{10}^{c,2} + \frac{3}{2} C_7^c C_9^c + \frac{3}{2} C_5^{c,2} + C_5^c C_6^c \right]$$

$$- C_7^c C_{10}^c + C_8^c C_9^c - C_8^c C_{10}^c - C_6^{c,2} + C_7^c C_8^c + 3 C_7^{c,2} - C_8^{c,2} \right]$$

- Full algebra given in our paper
- Also Mathematica notebook on the arXiv for easy evaluation

- Many possible combinations
- ~200

- Many possible combinations
- ~200
- I will pick out a few to try and show some interesting features
- For comparison: $C_1^{\rm SM} = -0.19\,,\ C_2^{\rm SM} = 1.1$

$C_1^c - C_4^c$

$C_1^{\prime c} - C_4^{\prime c}$

$$C_5^c - C_{10}^c$$

$C_5^{\prime c} - C_{10}^{\prime c}$

Lots more plots in our paper

Limits on NP scale

• We can interpret our constraints as limits on the new physics scale: $\left|\frac{4G_F}{\sqrt{2}}V_{cb}V_{cs}^*\Delta C^c\right|=\frac{1}{\Lambda_{\rm NP}^2}$

• When our limits are not symmetric, give two scales: one for positive BSM Wilson coefficients, and one for negative.

Limits on NP scale

CP violating BSM

- So far, assumed no extra CP violation
 - i.e. real Wilson coefficients
- So what if we include complex coefficients?

CP violating BSM

• $B \to J/\psi K$ – golden mode for determining CKM angle β

$$A_{CP}(t) = \frac{\Gamma\left[\bar{B}_d(t) \to J/\psi K_S\right] - \Gamma\left[B_d(t) \to J/\psi K_S\right]}{\Gamma\left[\bar{B}_d(t) \to J/\psi K_S\right] + \Gamma\left[B_d(t) \to J/\psi K_S\right]}$$
$$= S_{J/\psi K_S} \sin(\Delta M_d t) - C_{J/\psi K_S} \cos(\Delta M_d t)$$

• S is mixing induced, C is direct CP asymmetry

CP violating BSM

$$S_{J/\psi K_S} = \frac{2 \operatorname{Im} \lambda_{J/\psi K_S}}{1 + |\lambda_{J/\psi K_S}|^2}, \quad C_{J/\psi K_S} = \frac{1 - |\lambda_{J/\psi K_S}|^2}{1 + |\lambda_{J/\psi K_S}|^2}$$

$$\lambda_{J/\psi K_S} = -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \frac{C_1^c + r_{21} C_2^c + r_{31} C_3^c + r_{41} C_4^c}{C_1^{c*} + r_{21} C_2^{c*} + r_{31} C_3^{c*} + r_{41} C_4^{c*}}$$

- If only real coefficients, simplifies to:
- C = 0, $S = \sin 2\beta$

$$B \to J/\psi K$$

- But with $C \neq C^*$, much more complicated
- In particular, need to know the $r_{i1}\equiv \frac{\langle Q_i^c \rangle}{\langle Q_1^c \rangle}$ matrix element ratios
- Totally hadronic decay matrix elements very hard to calculate theoretically

Estimating hadronic matrix elements

Naive factorisation:

$$-\langle J/\psi K|(\bar{s}b)(\bar{c}c)|B\rangle = \langle J/\psi|\bar{c}c|0\rangle\langle K|\bar{s}b|B\rangle$$

- Holds in the limit $N_c
 ightarrow \infty$
- NF expectation:

$$-r_{21} = 1/3, r_{31} = 1, r_{41} = 1/3$$

Constraining complex BSM

- No chance of constraining BSM coefficients...
- But including also

$$\mathcal{B}(B o J/\psi K) \sim |\langle Q_1^c \rangle|^2 |C_1^c + C_2^c r_{21} + C_3^c r_{31} + C_4^c r_4 1|^2$$
 we have 3 observables

 So if we can control 1 of the hadronic parameters, we have enough information to reduce to a region on complex coefficient space

Constraining complex BSM

- Assuming only NP in one coefficient, have five real parameters: $\text{Re}(C^c), \text{Im}(C^c), \text{Re}(r_{21}), \text{Im}(r_{21}), |\langle Q_1^c \rangle|$
- Large N_c expansion tells us that the corrections to $\langle Q_1^c \rangle$ are $\sim 1/N_c^2$
- While r_{21} corrections are ~1
- So we can determine r_{21} from the data and also put limits on complex C_1^c/C_2^c

Complex C_1^c

- Lifetime ratio strongest
- Showing $a_{\rm sl}^s$, from ${
 m Im}(\Gamma_{12})$
 - But experimental precision low compared to theory
 - Exp $\approx (-60 \pm 280) \times 10^{-5}$
 - SM $\approx (2 \pm 0.2) \times 10^{-5}$
- Not showing $\mathcal{B}(B \to X_s \gamma)$ as the whole visible region is allowed

Complex C_1^c

- Do χ^2 fit to data
- Restrict $0 \le \text{Re}(r_{21}) \le 2/3$, $-1/3 \le \text{Im}(r_{21}) \le 1/3$
- By making reasonable assumptions about $\langle Q_1^c \rangle$, can constrain complex C_1^c despite theory problems
- Data suggests $\operatorname{Im}(\Delta C_1^c) \approx \pm 0.2$

Complex C_1^c

- Within red regions, r_{21} has large range
- But we also shown that there is a limited region where $r_{21} \approx 1/3$ in areement with NF
- Not true that the data on $B \to J/\psi K$ implies there must be large corrections to NF.

Complex C_2^c

- Same idea and process as for C_1^c
- No clear region where all the constraints agree

Complex C_2^c

- Add in $B o J/\psi K$
- Data driven approach favours real (but v. small) BSM contribution
- Data allows us to make nontrivial constraints, but no indication of "NF" region as for C_1^c

Complex $C_{3,4}^c$

- In this case, also have to fit $r_{31,41}$
- r_{31} : large N_c corrections are $\sim 1/N_c^2$
- r_{41} : similar to r_{21} , no good theoretical control expect large corrections from large N_c expansion
- Not enough observables to fit from data

- Comprehensive study of $b \to c\bar{c}s$ operators
 - Full mixing and RG evolution presented in one place
 - Full contribution to $\Delta\Gamma_s$ and $\tau(B_s)/\tau(B_d)$ calculated for first time (and available as Mathematica notebooks)
 - Lots of plots in paper showing various combinations

- Comprehensive study of $b \to c\bar{c}s$ operators
- CP violating BSM studies using the $B \to J/\psi K$ decay
 - Use a data driven approach to fit the matrix element ratio r_{21} from experiment
 - Still enough data to have meaningful constraints on complex Wilson coefficients

- Comprehensive study of $b \to c\bar{c}s$ operators
- CP violating BSM studies using the $B \to J/\psi K$ decay
 - Imaginary BSM contribution to $C_1^c \approx \pm 0.2i$
 - Contrary to expectation, NF can fit data well at $C_1^c \approx -0.2i$

- Comprehensive study of $b \to c\bar{c}s$ operators
- CP violating BSM studies using the $B \to J/\psi K$ decay
- Interpreting our constraints as NP scale, $b \to c\bar{c}s$ operators probe scales \geq 2 TeV, and above 10 TeV in the strongest case
 - Strong complimentarity with direct LHC searches

Thanks!