Interfacing EOS WET likelihoods to a SMEFT analysis

Matthew Kirk

SMEFT Tools 2025 27 Jan 2025

EOS

- Software for flavour physics phenomenology
- C++ backend, Python front-end
- Can be used via Jupyter notebook or CLI
- Developed by Contributors 29

Image: Second state of the second

What is EOS designed to do?

- 1) Calculate state of the art theory predictions
- 2) Fit theory parameters and/or observables from data
- 3) Produce Monte-Carlo pseudo-event samples

Theory predictions

 As of v1.0.13, more than 1300 (pseudo-)observables in a variety of processes

□ List of Observables

- Observables in (semi)leptonic b-hadron decays
- Observables in (semi)leptonic c-hadron decays
- Observables in rare (semi)leptonic and radiative b-hadron decays
- 🗄 Observables in neutral meson mixing
- Beudo-observables for the non-local form factors
- ∃ Form factors
- 🗄 Observables in scattering processes

Theory predictions

 Most processes have a variety of underlying parameterisations available (e.g. for hadronic physics, ...) which can be selected at run time

□ List of Observables

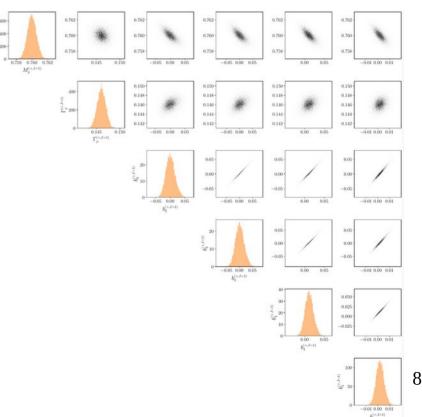
- Observables in (semi)leptonic b-hadron decays
- Observables in (semi)leptonic c-hadron decays
- Observables in rare (semi)leptonic and radiative b-hadron decays
- 🗄 Observables in neutral meson mixing
- Pseudo-observables for the non-local form factors
- \oplus Form factors
- \boxplus Observables in scattering processes

- EOS uses Bayesian approach specify prior probability and likelihood from experiment, and find posterior probability of parameters
- Analysis in EOS is done in the WET (/ LEFT), so parameters include WET coefficients

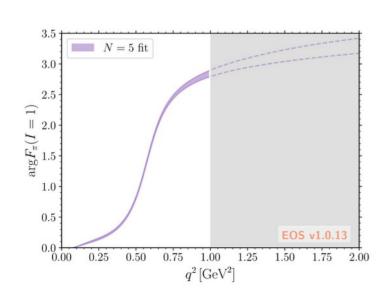
- Specify priors on your parameters
- Specify likelihoods for observables that depend on your parameters

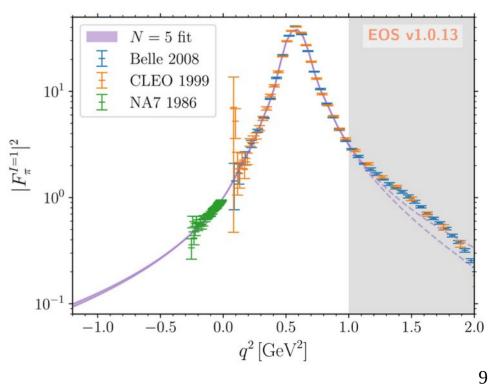
```
likelihoods:
 - name: EXP-Belle-timelike
   constraints:
     '0->pipi::Abs{f_+}^2@Belle:2008C;end=19'
  - name: EXP-CLEO-timelike
   constraints:
     '0->pipi::Abs{f +}^2@CLE0:2000B:end=29'
  - name: EXP-NA7-spacelike
   constraints:
     - '0->pipi::Abs{f_+}^2@NA7:1986A'
  - name: EXP-JLAB # From arXiv:0809.3052, table I, converted from f_pi to |f_pi|^2
    manual constraints:
      "0->pipi::f+":
        type: "Gaussian"
        observable: "0->pipi::Abs(f +}^2(q2):I=1"
        kinematics: {'q2': -2.45}
        options: {'form-factors': 'KKRvD2024'}
        mean: 0.027889
        sigma-stat: {"hi": 0.0033, "lo": 0.0033}
        sigma-sys: {"hi": 0.0043, "lo": 0.0023}
priors:
 - name: FF-fp-I1-pole-params-order5
   descriptions:
     - { 'parameter': '0->pipi::M_(+,1)@KKRvD2024', 'min': 0.757, 'max': 0.763, 'type': 'uniform'}
      - { 'parameter': '0->pipi::Gamma (+,1)@KKRvD2024', 'min': 0.141, 'max': 0.151, 'type': 'uniform'}

    name: FF-fp-I1-expansion-order5


    descriptions:
     - { 'parameter': '0->pipi::b_(+,1)^2@KKRvD2024', 'min': -0.08, 'max': 0.08, 'type': 'uniform'}
     - { 'parameter': '0->pipi::b_(+,1)^3@KKRvD2024', 'min': -0.09, 'max': 0.09, 'type': 'uniform'}
     - { 'parameter': '0->pipi::b_(+,1)^4@KKRvD2024', 'min': -0.05, 'max': 0.07, 'type': 'uniform'}
      - { 'parameter': '0->pipi::b_(+,1)^5@KKRvD2024', 'min': -0.02, 'max': 0.02, 'type': 'uniform'}
posteriors:
 - name: FF-fp-I1-order5
   global options:
     form-factors: KKRvD2024
    fixed parameters:
     0->pipi::t_0@KKRvD2024: -1.0
   prior:
     - FF-fp-I1-pole-params-order5
     - FF-fp-I1-expansion-order5
    likelihood:

    EXP-Belle-timelike


     - EXP-CLEO-timelike
```


EXP-NA7-spacelike
 EXP-JLAB

 Use nested sampling (specifically dynesty) to generate weighted samples corresponding to the posterior

• Which can be used to predict observables

Monte-Carlo samples

- 27 SignalPDFs predefined in EOS
- Built in functions to sample from them

□ List of Signal PDFs

□ Signal PDFs in (semi)leptonic b-hadron decays

Signal PDFs in leptonic and photoleptonic $\ensuremath{\boldsymbol{B}}$ decays

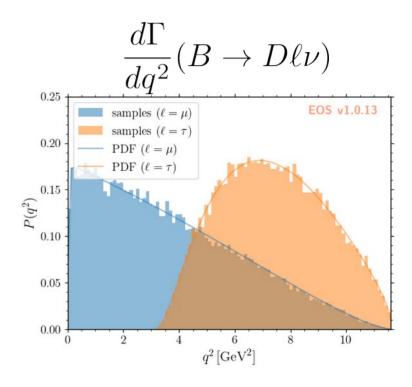
Signal PDFs in semileptonic $B \to P \ell^- \bar{\nu}$ decays

Signal PDFs in semileptonic $B \to V \ell^- \bar{\nu}$ decays

Signal PDFs in semileptonic $B \to PP\ell^-\bar{\nu}$ decays

Signal PDFs in semileptonic $\Lambda_b
ightarrow 1/2^+ \ell^- ar
u$ decays

Signal PDFs in semileptonic $\Lambda_b o 3/2^- \ell^- ar
u$ decays


□ Signal PDFs in rare (semi)leptonic *b*-hadron decays

Signal PDFs in rare semileptonic $B o P\{ar
u
u, \ell^+\ell^-\}$ decays

Signal PDFs in rare semileptonic $B o V\{ ar
u
u, \ell^+ \ell^- \}$ decays

Monte-Carlo samples

- 27 SignalPDFs predefined in EOS
- Built in functions to sample from them
- E.g. look at differential distributions of $B \to D \ell \nu$

EOS

- More information? See https://eoshep.org/
- Development on Github @ https://github.com/eos/eos
 - Very happy to accept new contributions
- More questions? Or want to ask about what EOS could do for you? Join the Discord server: https://discord.gg/hyPu7f7K6W

- All constraint information from EOS is in the language of WET / LEFT
 - Available datasets can be found at: https://github.com/eos/data/
- So how can you use them in a SMEFT analysis?

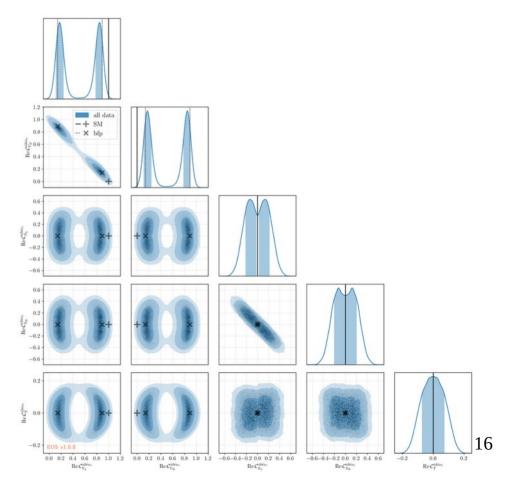
- Let's say you are studying BSM (either specific model or SMEFT)
- After RG running, you expect effects in some low energy B physics observables
- E.g. $B \to \pi \ell \nu$

• You see / remember this paper:

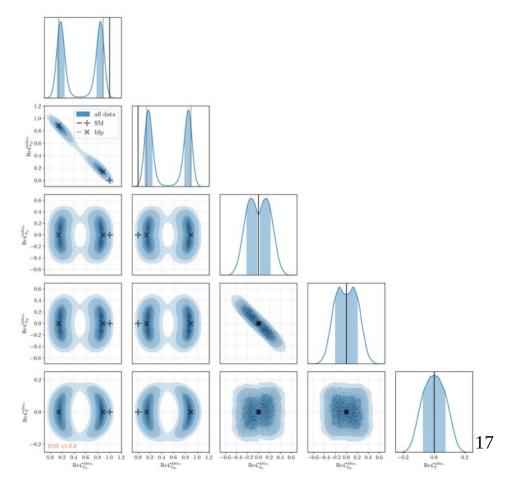
Toward a complete description of $b \to u \ell^- \bar{\nu}$ decays within the Weak Effective Theory

Domagoj Leljak,^a Blaženka Melić,^a Filip Novak,^b Méril Reboud,^c Danny van Dyk^c

^a Rudjer Boskovic Institute, Division of Theoretical Physics, Bijenička 54, HR-10000 Zagreb, Croatia

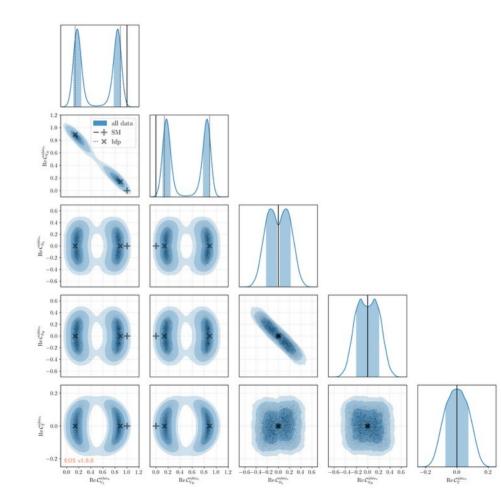

^bPhysik Department T31, Technische Universität München, 85748 Garching, Germany

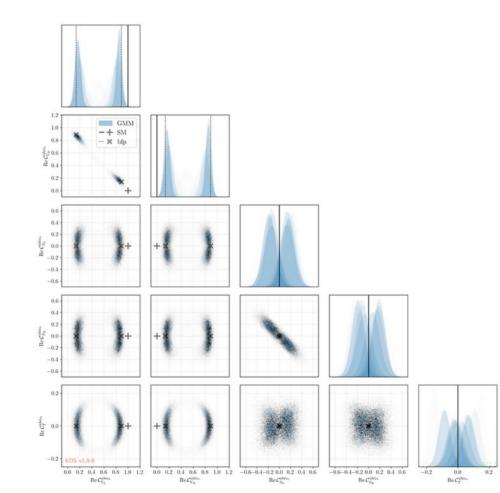
^c Institute for Particle Physics Phenomenology and Department of Physics, Durham University, Durham DH1 3LE, UK


E-mail: domagojleljak@gmail.com, melic@irb.hr, filip.novak@tum.de, merilreboud@gmail.com, danny.van.dyk@gmail.com

ABSTRACT: We fit the available data on exclusive semileptonic $b \rightarrow u \ell^- \bar{\nu}$ decays within the Standard Model and in the Weak Effective Theory. Assuming Standard Model dynamics, we find $|V_{ub}| = 3.59^{+0.13}_{-0.12} \times 10^{-3}$. Lifting this assumption, we obtain stringent constraints on the coefficients of the $ub\ell\nu$ sector of the Weak Effective Theory. Performing a Bayesian model comparison, we find that a beyond the Standard Model interpretation is favoured over a Standard Model interpretation of the available data. We provide a Gaussian mixture model that enables the efficient use of our fit results in subsequent analyses beyond the Standard Model, within and beyond the framework of the Standard Model Effective Field Theory.

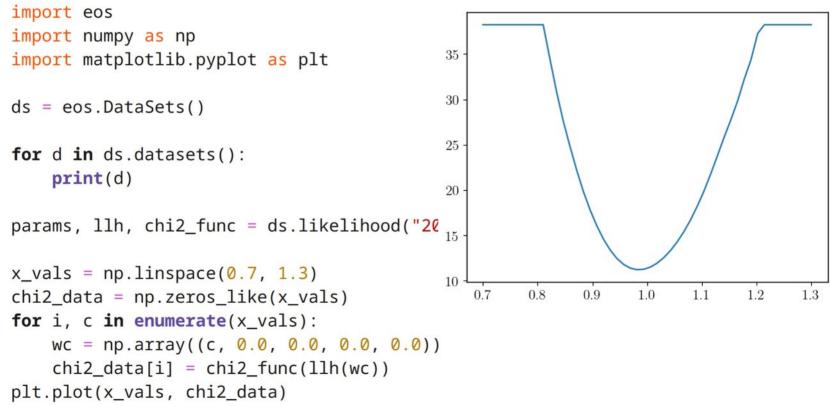
- You see this paper
- With this result for a likelihood on WET coefficients:

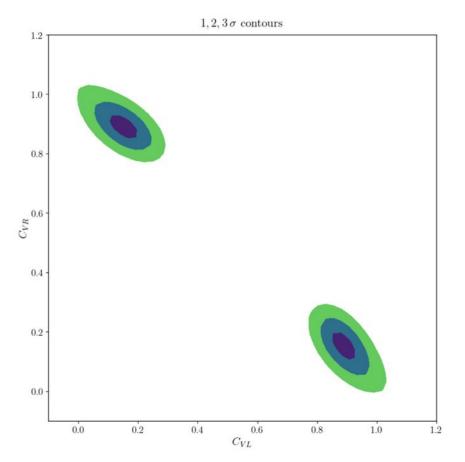

- You want to include this likelihood in your fit
- But it's not a nice simple Gaussian or anything...


Gaussian Mixture Model

• Approximate the posterior distribution as a sum of normal distributions

Gaussian Mixture Model


Gaussian Mixture Model



- https://github.com/eos/data/
- https://github.com/eos/data/tree/2023-01v2

```
import eos
import numpy as np
import matplotlib.pyplot as plt
ds = eos.DataSets()
for d in ds.datasets():
    print(d)
params, llh, chi2_func = ds.likelihood("2023-01v2", "WET-ublnu")
x_vals = np.linspace(0.7, 1.3)
chi2_data = np.zeros_like(x_vals)
for i, c in enumerate(x_vals):
```

```
wc = np.array((c, 0.0, 0.0, 0.0, 0.0))
    chi2_data[i] = chi2_func(llh(wc))
plt.plot(x_vals, chi2_data)
```


Going beyond GMMs

- Nabu: very much a WIP
 - A code to use machine learning to learn complicated (e.g non-gaussian) likelihoods.
- Once complete, EOS will use it to make likelihoods available
- Watch this (eoshep.org) space

EOS

- More information? See https://eoshep.org/
- Development on Github @ https://github.com/eos/eos
 - Very happy to accept new contributions
- More questions? Or want to ask about what EOS could do for you? Join the Discord server: https://discord.gg/hyPu7f7K6W