Vector-like leptons

Matthew Kirk

ICCUB, Barcelona

Institut de Ciències del Cosmos

Precision EW physics from Beta Decays to the Z-pole 25th October 2022
(based on 2008.03261 plus 2002.07184/2008.01113 by other authors)

Vector-like leptons

- Heavy counterpart to SM leptons, but with L \& R having same quantum numbers
- Non-chiral or vector-like

VLL - motivations

- Can be arbitrarily heavy (not EW scale)
- Unlike new chiral fermions, no strong bounds from Higgs data
- See discussion in 10.1155/2013/910275

VLL - BSM motivations

- Can arise from composite Higgs, GUTs, neutrino mass models
- E.g. current "hot" topic:
- B anomalies - 4321 model predicts LQ + Z' + colouron + VLQs and VLLs

Vector-like leptons

- Six possible states (if you want them to couple to the SM)

	$S U(3)$	$S U(2)_{L}$	$U(1)_{Y}$
N	1	1	0
E	1	1	-1
Δ_{1}	1	2	$-1 / 2$
Δ_{3}	1	2	$-3 / 2$
Σ_{0}	1	3	0
Σ_{1}	1	3	-1

LHC bounds

- Direct searches with first generation couplings:
- Singlets: $\mathrm{M}>150 \mathrm{GeV}$
- Doublets: $\mathrm{M}>700 \mathrm{GeV}$
- Triplets: M > 450 GeV

	$S U(3)$	$S U(2)_{L}$	$U(1)_{Y}$
N	1	1	0
E	1	1	-1
Δ_{1}	1	2	$-1 / 2$
Δ_{3}	1	2	$-3 / 2$
Σ_{0}	1	3	0
Σ_{1}	1	3	-1

Electroweak precision bounds

- For first generation couplings (2σ):

$$
\begin{aligned}
& -N: \mathrm{M} / \mathrm{g}>4 \mathrm{TeV} \\
& -E: \mathrm{M} / \mathrm{g}>5.5 \mathrm{TeV} \\
& -\Delta_{1}: \mathrm{M} / \mathrm{g}>5.5 \mathrm{TeV} \\
& -\Delta_{3}: \mathrm{M} / \mathrm{g}>8 \mathrm{TeV} \\
& -\Sigma_{0}: \mathrm{M} / \mathrm{g}>6 \mathrm{TeV} \\
& -\Sigma_{1}: \mathrm{M} / \mathrm{g}>4 \mathrm{TeV}
\end{aligned}
$$

	$S U(3)$	$S U(2)_{L}$	$U(1)_{Y}$
N	1	1	0
E	1	1	-1
Δ_{1}	1	2	$-1 / 2$
Δ_{3}	1	2	$-3 / 2$
Σ_{0}	1	3	0
Σ_{1}	1	3	-1

Electroweak precision bounds

- For second generation couplings (2σ):

$$
\begin{aligned}
& -N: \mathrm{M} / \mathrm{g}>4 \mathrm{TeV} \\
& -E: \mathrm{M} / \mathrm{g}>4 \mathrm{TeV} \\
& -\Delta_{1}: \mathrm{M} / \mathrm{g}>3 \mathrm{TeV} \\
& -\Delta_{3}: \mathrm{M} / \mathrm{g}>5.5 \mathrm{TeV} \\
& -\Sigma_{0}: \mathrm{M} / \mathrm{g}>5 \mathrm{TeV} \\
& -\Sigma_{1}: \mathrm{M} / \mathrm{g}>2.5 \mathrm{TeV}
\end{aligned}
$$

	$S U(3)$	$S U(2)_{L}$	$U(1)_{Y}$
N	1	1	0
E	1	1	-1
Δ_{1}	1	2	$-1 / 2$
Δ_{3}	1	2	$-3 / 2$
Σ_{0}	1	3	0
Σ_{1}	1	3	-1

How do they alter precision physics?

- In general:
- Tree level: modify $Z \ell \ell \& Z \nu \nu$ (Z pole), and $W \ell \nu$ (CKM determination, G_{F} determination)
- 1-loop: modify ($\bar{\ell} \ell$) $(\bar{\ell} \ell)$ contact operator (G_{F} determination)

G_{F}

- From $\mu \rightarrow e \nu \nu$
- With $(\bar{\ell} \ell)(\bar{\ell} \ell)$ need 1st and 2 nd gen coupling
- With $W \ell \nu$ only need one
- In principle all $V_{u q}$ determinations depend on G_{F} like $V_{u q} \propto 1 / G_{F}$
- But $K_{\mu 2}$ is really $K_{\mu 2} / \pi_{\mu 2}=>G_{F}$ cancels
G_{F}

G_{F}

G_{F}

- Cannot reconcile $V_{u s}$ and $V_{u d}$ data with G_{F} alone
- $\delta G_{F} \approx-5 \cdot 10^{-4}$ brings $V_{u d}$ to $V_{u s}^{K_{\mu}}$
- $\delta G_{F} \approx-10^{-2}$ needed to bring $V_{u s}^{K_{\ell 3}}$ to $V_{u s}^{K_{\mu 2}}$
- Factor of 20 difference

$W \ell \nu$

- Slightly more complex, as $W \ell \nu$ changes directly affect semileptonic decays which determine $V_{u q}$, but also G_{F}
$-G_{F} \rightarrow G_{F}\left(1+\delta_{e e}+\delta_{\mu \mu}\right)$
- E.g. NP in $W e \nu$ cancels in beta decay, only sensitive to $W \mu \nu$

$W \ell \nu$

- $V_{u s} / V_{u d}$ from $K_{\mu 2} / \pi_{\mu 2}$ is independent of both G_{F} and $W \ell \nu$ changes
- $V_{u s}^{K_{\ell 3}}$ sensitive to both G_{F} and $W \ell \nu$, but either only $W e \nu$ or $W \mu \nu$ for $K_{\mu 3}$ or $K_{e 3}$ respectively
- Important to have separate data
$W \ell \nu$
2022

$W \ell \nu$
2022

Explaining CAA with VLLs

CKM vs EWPO

- As mentioned, SU2 invariance means changes to $W \ell \nu$ also give changes to $Z \ell \ell$
- So we must test our CKM solutions against EWPO

CKM vs EWPO

$$
\begin{aligned}
R\left(V_{u s}\right) & \equiv \frac{V_{u s}^{K \mu 2}}{V_{u s}^{\beta}} \equiv \frac{V_{u s}^{K \mu 2}}{\sqrt{1-\left|V_{u d}^{\beta}\right|^{2}-\left|V_{u b}\right|^{2}}} \\
& \approx 1-\left(\frac{V_{u d}}{V_{u s}}\right)^{2} \varepsilon_{\mu \mu} \approx 1-20 \varepsilon_{\mu \mu}
\end{aligned}
$$

LFV strikes back

- With a single VLL, giving NP in μ and e, you get LFV
- Because $Z \ell_{i} \ell_{j} \sim \sqrt{\left(W \ell_{i} \nu_{i}\right)\left(W \ell_{j} \nu_{j}\right)}$
- And LFV bounds are at least an order of magnitude stronger than other EWPO

Beyond simplest model

- With two independent VLLs can avoid LFV bounds

Beyond simplest model

- Consider RH neutrino coupled to electrons, and Σ_{1} ($S U(2)$ triplet equivalent of $\mathrm{RH} e$) coupled to muons
- Improves fit by 3σ

Conclusions

- VLLs well motivated extensions of the SM
- And can still exist below the TeV scale
- VLLs coupled to muons and electrons can (partially) resolve the CAA
- But EWPO and LFV are important constraints

Backup

4321 VLLs at CMS?

Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets
 in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

The CMS Collaboration

Abstract

The first search is presented for vector-like leptons (VLLs) in the context of the " 4321 model", an ultraviolet-complete model with the potential to explain existing B physics measurements that are in tension with standard model predictions. The analyzed data, corresponding to an integrated luminosity of $96.5 \mathrm{fb}^{-1}$, were recorded in 2017 and 2018 with the CMS detector at the LHC in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$. Final states with ≥ 3 b-tagged jets and two third-generation leptons ($\tau \tau$, τv_{τ}, or $v_{\tau} v_{\tau}$) are considered. Upper limits are derived on the VLL production cross section in the VLL mass range $500-1050 \mathrm{GeV}$. The maximum likelihood fit prefers the presence of signal at the level of 2.8 standard deviations, for a representative VLL mass point of 600 GeV . As a consequence, the observed upper limits are approximately double the expected limits.

Beyond simplest model

- My version of Andi's plot

Beyond simplest model

LHC bounds

- Direct searches with third generation couplings:
- Singlets: $\mathrm{M}>$? GeV
- Doublets: $\mathrm{M}>790 \mathrm{GeV}$
- Triplets: M > ? GeV

	$S U(3)$	$S U(2)_{L}$	$U(1)_{Y}$
N	1	1	0
E	1	1	-1
Δ_{1}	1	2	$-1 / 2$
Δ_{3}	1	2	$-3 / 2$
Σ_{0}	1	3	0
Σ_{1}	1	3	-1

