Meson mixing: bag parameters and sum rules

Matthew Kirk

based on 1711.02100 (MK, Rauh, Lenz) 1712.06572 (Di Luzio, MK, Lenz)

Experimental status (~2017)

- B_{s} Mixing
- ΔM_{s} is extremely well measured (0.1% uncertainty)
$-\Delta \Gamma_{s}$ known with sub 10% uncertainty
- B lifetime ratios
- $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$ known with $<0.25 \%$ uncertainty
- D Mixing
- First > 5 sigma measurement from LHCb in 2012
- O(10\%) accuracy
- D lifetime ratios
$-\tau\left(D^{+}\right) / \tau\left(D^{0}\right)$ known with $<1 \%$ uncertainty

Lattice status (~2017)

- Lattice can determine non-perturbative parameters - essentially they do the path integral numerically
- We are interested in overlap between meson/anti-meson states
\langle meson|four quark operator|anti-meson $\rangle \sim B$ or
\langle meson|four quark operator $|$ meson $\rangle \sim B / \epsilon$

Vacuum saturation approximation

$$
\begin{aligned}
\left\langle B_{s}\right|(\bar{q} \Gamma b)(\bar{q} \Gamma b)\left|\overline{B_{s}}\right\rangle= & \sum_{\text {all states }}\left\langle B_{s}\right|(\bar{q} \Gamma b)|X\rangle\langle X|(\bar{q} \Gamma b)\left|\overline{B_{s}}\right\rangle \\
\approx & \left\langle B_{s}\right|(\bar{q} \Gamma b)|0\rangle\langle 0|(\bar{q} \Gamma b)\left|\overline{B_{s}}\right\rangle \\
& \text { These then look like decay } \\
& \text { constants for meson to vacuum - } \\
& \text { extracted from experimental decay } \\
& \text { width } \\
\left\langle B_{s}\right|(\bar{q} \Gamma b)(\bar{q} \Gamma b)\left|\overline{B_{s}}\right\rangle= & B_{\Gamma}\left\langle B_{s}\right|(\bar{q} \Gamma b)|0\rangle\langle 0|(\bar{q} \Gamma b)\left|\overline{B_{s}}\right\rangle
\end{aligned}
$$

Bag parameter

Lattice status (~2017)

- B_{s} Mixing
- Selection of lattice results, all in agreement
- B Lifetimes
- only old ('98 / '01) lattice results

Lattice status (~2017)

- D mixing
- a handful of lattice results

- D lifetimes

Theory status (~2015)

- B Mixing $-\Delta M_{s}=18.3 \pm 2.7 \mathrm{ps}^{-1}$

$$
\Delta \Gamma_{\mathrm{s}}=0.088 \pm 0.020 \mathrm{ps}^{-1}
$$

- B Lifetimes - $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)=1.0005 \pm 0.0011$

$$
-\tau\left(B^{+}\right) / \tau\left(B_{d}\right)=1.04_{-0.02}^{+0.05}
$$

- D mixing -
- D lifetimes - $\tau\left(D^{+}\right) / \tau\left(D^{0}\right)=2.2 \pm 1.7$

What has happened since?

- New lattice result from Fermilab-MILC included in FLAG average
- $f_{B_{s}} \sqrt{B}: 270 \pm 16 \mathrm{MeV} \rightarrow 274 \pm 8 \mathrm{MeV}$
- HQET sum rule calculation
- Independent determination of non-perturbative matrix elements for all dimension-6 operators
- $V_{c b}$ discrepancy between inclusive / exclusive is perhaps starting to be resolved?
- (1703.08170, 1707.09509, 1708.07134, talk by Stefan Schacht at LHCb Implications)

What has happened since?

- New lattice result from Fermilab-MILC included in FLAG average
- $f_{B_{s}} \sqrt{B}: 270 \pm 16 \mathrm{MeV} \rightarrow 274 \pm 8 \mathrm{MeV}$
- HQET sum rule calculation
- Independent determination of non-perturbative matrix elements for all dimension-6 operators
- $V_{c b}$ discrepancy between inclusive / exclusive is perhaps starting to be resolved?
- (1703.08170, 1707.09509, 1708.07134, talk by Stefan Schacht at LHCb Implications)

Intro to Effective Field Theories

EFFECTIVE FIELD THEORIES

EFTs In a Nutshell

$>$ Applicable in any theory with large scale separation
$>$ Often assumption that "heavy" particle mediates an interaction which is approximated to be point-like
$>$ Create vertices not seen in the SM, with Wilson Coefficients behaving as effective couplings
$>$ Calculations can be performed with a precision up to the \sim ratio of the two scales

EFFECTIVE FIELD THEORIES

Top-Down Vs Bottom-Up

Top-Down
> Start with full UV-complete theory
> Integrate out heavy fields
> Generate mathematically simpler theory
> Wilson coefficients defined by variables of full theory

$$
G_{F}=\frac{\sqrt{2} g^{2}}{8 M_{W}^{2}} \longleftarrow \begin{gathered}
\text { Suppressed by } \\
\text { "heavy" scale }
\end{gathered}
$$

Bottom-Up
> Build basis of operators without making any connection to a UV complete theory
> Wilson coefficients entirely unspecified

Intro to Heavy Quark Effective Theory

- In mesons containing b quarks, we have two scales:
- the b quark mass ($\sim 4 \mathrm{GeV}$)
- the light quark masses / the QCD scale ($\sim 100 \mathrm{meV}$)
- So we can take an effective theory approach

Intro to Heavy Quark Effective

Theory

- Intuitive picture - think of b quark as being at rest, and the light quarks / gluons moving around in the QCD potential it creates
- Analogous to way of studying hydrogen atom proton at rest and electron moving around in the QED (i.e. electromagnetic) potential it creates

Intro to Heavy Quark Effective

Theory

- Intuitive picture - think of b quark as being at rest, and the light quarks / gluons moving around in the QCD potential it creates
- Analogous to way of studying hydrogen atom proton at rest and electron moving around in the QED (i.e. electromagnetic) potential it creates

Introduction to sum rules

- Consider two point function:

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q \cdot x}\langle 0| T\left\{j_{\mu}(x) j_{\nu}(0)\right\}|0\rangle=\left(q_{\mu} q_{\nu}-q^{2} g_{\mu \nu}\right) \Pi\left(q^{2}\right)
$$

- It is analytic in q, with poles at bound states and branch cut for continuum of excited states
- At large |q|, everything off-shell, high energy \rightarrow perturbation theory works
- Relate the two regions by Cauchy's theorem

Introduction to sum rules

$$
\Pi_{b}\left(Q^{2}\right)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} d z \frac{\Pi_{b}(z)}{z-Q^{2}}
$$

$$
\Pi_{b}\left(Q^{2}\right)=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi_{b}(s)}{s-Q^{2}}+\frac{1}{2 \pi i} \oint_{O} d z \frac{\Pi_{b}(z)}{z-Q^{2}} .
$$

Introduction to sum rules

$$
\Pi_{b}\left(Q^{2}\right)=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi_{b}(s)}{s-Q^{2}}+\frac{1}{2 \pi i} \oint_{\substack{ }} d z \frac{\Pi_{b}(z)}{z-Q^{2}}
$$

perturbation theory

Proportional to the crosssection for quark pair production - get from experiment

Remove by taking derivatives, Borel transformation, ...

HQET sum rules

- Made possible by 3-loop calculations done in 2008 by Grozin, Lee (0812.4522)

HQET sum rules

- Made possible by 3-loop calculations done in 2008 by Grozin, Lee (0812.4522)

$$
\begin{aligned}
M_{3}\left(\omega_{1}, \omega_{2}\right)= & \left(-2 \omega_{1}\right)^{3 d / 2-5}\left(-2 \omega_{2}\right)^{3 d / 2-5} \Gamma^{3}(d / 2-1) \\
& \times\left[\begin{array}{c}
\frac{\Gamma\left(\frac{3}{2} d-4\right) \Gamma^{2}\left(5-\frac{3}{2} d\right) \Gamma\left(2-\frac{d}{2}\right)}{(d-3) \Gamma(d-2)} \\
\\
\end{array}+2 \frac{\Gamma(8-3 d)}{d-3} x^{4-3 d / 2}{ }_{3} F_{2}\left(\begin{array}{c|c}
1, d-2, \frac{3}{2} d-4 \\
\frac{3}{2} d-3,3 d-8 & \frac{1}{x}
\end{array}\right)\right. \\
& +\frac{4 \pi \Gamma(6-2 d) x^{3 d / 2-5}}{(3 d-10) \Gamma(d-2) \sin (3 \pi d)}{ }_{2} F_{1}\left(\begin{array}{c}
5-\frac{3}{2} d, 7-2 d \\
6-\frac{3}{2} d
\end{array}\right. \\
& \left.+2 \frac{\Gamma}{x}\right) \\
& +\frac{\Gamma(8-3 d)}{d-3} x^{3 d / 2-4}{ }_{3} F_{2}\left(\left.\begin{array}{c}
1, d-2, \frac{3}{2} d-4 \\
\frac{3}{2} d-3,3 d-8
\end{array} \right\rvert\, x\right) \\
& \left.+\frac{4 \pi \Gamma(6-2 d) x^{5-3 d / 2}}{(3 d-10) \Gamma(d-2) \sin (3 \pi d)}{ }_{2} F_{1}\left(\left.\begin{array}{c}
5-\frac{3}{2} d, 7-2 d \\
6-\frac{3}{2} d
\end{array} \right\rvert\, x\right)\right] .
\end{aligned}
$$

HQET sum rules

- Made possible by 3-loop calculations done in 2008 by Grozin, Lee (0812.4522)
- First steps made by Grozin, Klein, Mannel, Pivovarov in mid 2016 (1606.06054)
- Late last year, full set of dim-6 operators done by MK, Lenz, Rauh (1711.02100)

HQET sum rules

- Do all dim 6 operators for mixing AND lifetimes
- How?
- 3 loop diagrams (with 2 external momenta), reduced using FIRE to those known by Grozin, Lee
- HQET running to scale m_{b}
- HQET-QCD matching (1-loop) at scale m_{b}

HQET sum rules

- Do all dim 6 operators for mixing AND lifetimes
- How?
- 3 loop diagrams (with 2 external momenta), reduced using FIRE to those known by Grozin, Lee

HQET sum rules

- Do all dim 6 operators for mixing AND lifetimes
- How?
- 3 loop diagrams (with 2 external momenta), reduced using FIRE to those known by Grozin, Lee
- HQET running to scale m_{b}
- HQET-QCD matching (1-loop) at scale m_{b}

HQET sum rules - results

HQET sum rules - results

B mixing

Effect on observables

- $\Delta M_{s}=18.1 \pm 1.9 \mathrm{ps}^{-1}$
- $\Delta \Gamma_{s}=0.079 \pm 0.023 \mathrm{ps}^{-1}$
- $a_{s l}^{s}=2.0 \pm 0.3 \times 10^{-5}$
- Gives errors that are comparable ($\pm 15 \%$) with lattice data \rightarrow lattice not the only game in town

Note on make-up of errors

- Our calculation gives a total uncertainty of ~5-10\%
- Dominant uncertainty is the matching

Note on make-up of errors

- Nice trick is that we can calculate the deviation of bag parameters from 1
- Allows our errors to be much smaller than $\cdot B_{\widetilde{Q}}=0.91 \pm 0.03$ be much smaller than $\cdot B_{\widetilde{Q}}=0.91 \pm 0.03$ you might expect
- Define $\Delta B \equiv B-1$
- $\Delta B_{\widetilde{Q}}=-0.09 \pm 0.03$

HQET sum rules - results

B lifetimes

HQET sum rules - results
 D lifetimes

Effect on observables

- $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)=0.9994 \pm 0.0025$
- $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)=1.082_{-0.026}^{+0.022}$
- $\tau\left(D^{+}\right) / \tau\left(D^{0}\right)=2.7_{-0.8}^{+0.7}$
- For lifetimes, lattice hasn't yet arrived \rightarrow sum rules the only game in town

Effects on NP models

- Non-perturbative parameters very important
- Constraints from B mixing depend sensitively on values

Source	$f_{B_{s}} \sqrt{\hat{B}}$	$\Delta M_{s}^{\mathrm{SM}}$
HPQCD14 [116]	$(247 \pm 12) \mathrm{MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
HQET-SR [71]	$(261 \pm 8) \mathrm{MeV}$	$(18.1 \pm 1.1) \mathrm{ps}^{-1}$
ETMC13 [117]	$(262 \pm 10) \mathrm{MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [118] $=$ FLAG13 [119]	$(266 \pm 18) \mathrm{MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [65]	$(\mathbf{2 7 4} \pm \mathbf{8}) \mathrm{MeV}$	$\left(\mathbf{2 0 . 0 1} \pm \mathbf{1 . 2 5)} \mathbf{p s}^{-\mathbf{1}}\right.$
Fermilab16 [67]	$(274.6 \pm 4) \mathrm{MeV}$	$(20.1 \pm 0.7) \mathrm{ps}^{-1}$
HPQCD06 [120]	$(281 \pm 20) \mathrm{MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [121]	$(290 \pm 20) \mathrm{MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [122]	$(291 \pm 18) \mathrm{MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

Effects on NP models

- Using the latest FLAG average \rightarrow much less space for e.g. Z' model

- See 1712.06572 (Di Luzio, MK, Lenz)

One constraint to kill them all?

Luca Di Luzio, Matthew Kirk, Alexander Lenz

Institute for Particle Physics Phenomenology, Durham University, DH1 3LE Durham, United Kingdom luca.di-luzio@durham.ac.uk,m.j.kirk@durham.ac.uk, alexander:lenz@durham.ac.uk

Abstract

Many new physics models that explain the intriguing anomalies in the b-quark flavour sector are severely constrained by $B_{s^{-}}$ mixing, for which the Standard Model prediction and experiment agreed well until recently. New non-perturbative calculations point, however, in the direction of a small discrepancy in this observable. Using up-to-date inputs to determine $\Delta M_{s}^{\mathrm{SM}}$, we finda severe reduction of the allowed parameter space of Z^{\prime} and leptoquark models explaining the B-anomalies. Remarkably, in the former case the upper bound on the Z^{\prime} mass approaches dangerously close to the energy scales already probed by the LHC. We finally identify some model building directions in order to alleviate the tension with B_{s}-mixing.

Keywords: New Physics, B-Physics, B-mixing

Effects on NP models

- Using

Effects on NP models

- Good example of why independent determinations necessary
- From different lattice groups AND other methods

What next?

- Determination of dimension-7 operators

$$
R_{2}=\frac{1}{m_{b}^{2}} \bar{b}_{i} \overleftarrow{D}_{\lambda} \gamma_{\mu}\left(1-\gamma^{5}\right) D^{\lambda} q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}
$$

from lattice / sum rules - reduce error in $\Delta \Gamma_{s}$

- Lattice confirmation of dimension-6

What next?

- Determination of dimension-7 operators

$$
R_{2}=\frac{1}{m_{b}^{2}} \bar{b}_{i} \overleftarrow{D}_{\lambda} \gamma_{\mu}\left(1-\gamma^{5}\right) D^{\lambda} q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}
$$

from lattice / sum rules - reduce error in $\Delta \Gamma_{s}$

- Lattice confirmation of dimension-6
- HPQCD working on both
- MK, Rauh, Lenz working on dim-7 now

What next?

- Determination of dimension-7 operators

$$
R_{2}=\frac{1}{m_{b}^{2}} \bar{b}_{i} \overleftarrow{D}_{\lambda} \gamma_{\mu}\left(1-\gamma^{5}\right) D^{\lambda} q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}
$$

from lattice / sum rules - reduce error in $\Delta \Gamma_{s}$

- Lattice confirmation of dimension-6
- Know $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$ better from experiment - while already doing very well, theory is currently ahead

Thanks!

Backup

Flavour fit with $M_{Z^{\prime}}=10 \mathrm{TeV}$

Flavour fit with $M_{Z^{\prime}}=10 \mathrm{TeV}$

Mixing operators

$$
\begin{array}{ll}
Q_{1}=\bar{b}_{i} \gamma_{\mu}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}, & \\
Q_{2}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{j}, & Q_{3}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{i}, \\
Q_{4}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{j}, & Q_{5}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{i},
\end{array}
$$

Lifetime operators

$$
\begin{array}{ll}
Q_{1}^{q}=\bar{\gamma} \gamma_{\mu}\left(1-\gamma^{5}\right) q \overline{\gamma^{\mu}}\left(1-\gamma^{5}\right) b, & T_{1}^{q}=\bar{h} \gamma_{\mu}\left(1-\gamma^{5}\right) T^{A} q \bar{q} \gamma^{\mu}\left(1-\gamma^{5}\right) T^{A} b, \\
Q_{2}^{q}=\bar{b}\left(1-\gamma^{5}\right) q \bar{q}\left(1+\gamma^{5}\right) b, & T_{2}^{q}=\bar{b}\left(1-\gamma^{5}\right) T^{A} q \bar{q}\left(1+\gamma^{5}\right) T^{A} b .
\end{array}
$$

HQET sum rules - results

D mixing

