Charming new physics in b (eautiful) processes?

(based on 1701.09183)
Sebastian Jäger, Matthew Kirk, Alex Lenz, Kirsten Leslie

13th March 2017

Background

- What hints are there of the Standard Model breaking down?
- In the flavour sector, over the last couple of years a few anomalies have appeared...

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$

- Di-muon final states easy to measure experimentally, but branching ratio $\sim 10^{-7}$
- First hint of anomaly in August 2013
- "Confirmed" / still present in March 2015 using full run 1 data set
$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$

- Di-muc branchi
- First hi
- "Confir
 data set

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+S_{6}^{s} \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& \left.S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

P_{5}^{\prime} - combination of angular observables in $\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$ that is theoretically clean

$\sim 3 \sigma$ deviations

- Compare branching ratio of $\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$ to $\mathrm{B} \rightarrow \mathrm{K}^{*}$ ee
- SM: $R_{K}\left(1<q^{2}<6 \mathrm{GeV}^{2}\right)=1.0003 \pm 0.0001^{1}$
- LHCb Run 1: $R_{K}\left(1<q^{2}<6 \mathrm{GeV}^{2}\right)=0.745_{-0.074}^{+0.09} \pm 0.036^{2}$
${ }^{2}$ arXiv:1406.6482

R_{D}

- Compare branching ratio of $\mathrm{B} \rightarrow \mathrm{D} \tau \nu$ to $\mathrm{B} \rightarrow \mathrm{D} \mu \nu$
- Interesting as this is a tree level decay

Good / Boring Flavour Measurements

$$
\begin{array}{r}
\Delta \Gamma_{\mathrm{s}}: \frac{\text { Experiment }}{\mathrm{SM}}=\frac{(0.086 \pm 0.006) \mathrm{ps}^{-1}}{(0.088 \pm 0.020) \mathrm{ps}^{-1}}=0.98 \pm 0.23 \\
\mathcal{B}\left(\mathrm{~B} \rightarrow X_{\mathrm{s}} \gamma\right): \frac{\text { Experiment }}{\mathrm{SM}}=\frac{(3.32 \pm 0.16) \times 10^{-4}}{(3.36 \pm 0.23) \times 10^{-4}}=0.99 \pm 0.08 \\
\frac{\tau\left(\mathrm{~B}_{\mathrm{s}}\right)}{\tau\left(\mathrm{B}_{\mathrm{d}}\right)}: \frac{\text { Experiment }}{\mathrm{SM}}=\frac{0.990 \pm 0.004}{1.0005 \pm 0.0011}=0.990 \pm 0.004
\end{array}
$$

Lifetime ratio - side note

- Looks like lifetime ratio has $\sim 2.5 \sigma$ deviation from SM
- So why is this not talked about as an anomaly?
- Look at history ...

Charming New Physics

- Since we have several anomalies, we pick our favourite it seems unlikely all will survive more data
- P_{5}^{\prime} - lots of global fits ${ }^{1}$, result is a shift in $C_{9} \sim-1$
- What kind of NP can explain the effect, while also being testable in other observables?

Charming New Physics

- Since we have several anomalies, we pick our favourite it seems unlikely all will survive more data
- P_{5}^{\prime} - lots of global fits ${ }^{1}$, result is a shift in $C_{9} \sim-1$
- What kind of NP can explain the effect, while also being testable in other observables?
- ($\overline{\mathrm{s} b}$) ($\overline{\mathrm{c}} \mathrm{c}$) operators contribute to rare B-decays and B-mixing - model independent approach, but giving correlated effects in several places

Charming New Physics

- In the SM, around half of the contribution to $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$ transitions comes from virtual charm quark loops
- Seems like a reasonable place to start
- Constraints on these kind of operators from tree-level decays are not as tight as might be expected (see e.g. Tetlalmatzi-Xolocotzi, Lenz, et al. ${ }^{1}$ - 10\% effects still allowed)

Basis of Operators

- We take the most general set of $\left(\overline{\mathrm{s}}^{\alpha} \Gamma \mathrm{b}^{\beta}\right)\left(\overline{\mathrm{c}}^{\gamma} \Gamma^{\prime} \mathrm{c}^{\delta}\right)$ operators as our basis
- Two colour structures
- Five Dirac matrix combinations - two scalar, two vector, one tensor
- Plus a chirality flip
- Gives 20 possible operators

Basis of Operators

$$
\begin{array}{ll}
Q_{1}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} \mu^{\mu} c_{L}^{i}\right) & Q_{2}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} \mu^{\mu} c_{L}^{j}\right) \\
Q_{3}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right) & Q_{4}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} C_{R}^{j}\right) \\
Q_{5}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right) & Q_{6}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{i}\right)\left(s_{L}^{j} \gamma^{\mu} c_{L}^{j}\right) \\
Q_{7}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right) & Q_{8}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} c_{R}^{j}\right) \\
Q_{9}^{c}=\left(\vec{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{i}\right) & Q_{10}^{c}=\left(\bar{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{j}\right)
\end{array}
$$

Basis of Operators

$$
\begin{array}{rll}
Q_{1}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right) & Q_{2}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{j}\right) \\
Q_{3}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right) & Q_{4}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} c_{R}^{j}\right) \\
Q_{5}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right) & Q_{6}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{j}\right) \\
Q_{7}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right) & Q_{8}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} c_{R}^{j}\right) \\
Q_{9}^{c}=\left(\bar{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{i}\right) & Q_{10}^{c}=\left(\bar{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{j}\right) \\
& \mathcal{H}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{cb}} V_{\mathrm{cs}}^{*} \sum_{i=1}^{20}\left(C_{i}^{c} Q_{i}^{c}+C_{i}^{c \prime} Q_{i}^{c \prime}\right)
\end{array}
$$

Since $Q_{1,2}$ appears in the SM, we split up the Wilson coefficients as $C_{i}^{c}=C_{i}^{S M}+\Delta C_{i}$, with $C_{1,2}^{S M} \neq 0$

Calculating the NP contributions

- We focused on the new contributions to 3 observables

$$
\Delta \Gamma_{\mathrm{s}} \quad \frac{\tau\left(\mathrm{~B}_{\mathrm{s}}\right)}{\tau\left(\mathrm{B}_{\mathrm{d}}\right)} \quad \mathcal{B}\left(\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma\right)
$$

- We calculated at leading order in our NP coefficients, but didn't include any $\mathcal{O}\left(\alpha_{s}\right)$ corrections to those

$\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma$ results

$\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma$ results

$\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma$ results

- Q_{9} is leptonic penguin: $\left(\bar{s} \gamma^{\mu} P_{L} \mathrm{~b}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$
- $Q_{7 \gamma}$ is photon penguin: $\left(\overline{\mathrm{s}} \sigma^{\mu \nu} P_{R} \mathrm{~b}\right) F_{\mu \nu}$

$$
\begin{aligned}
Q_{1-4}^{c} & \sim\left(\ln m_{\mathrm{c}}^{2} / \mu^{2}+\text { const. }+q^{2} \text {-dependent terms }\right) Q_{9} \\
Q_{5,6}^{c} & \sim\left(q^{2} \text {-dependent terms }\right) Q_{7 \gamma} \\
Q_{7-10}^{c} & \sim\left(\ln m_{\mathrm{c}}^{2} / \mu^{2}+\text { const. }+q^{2} \text {-dependent terms }\right) Q_{7 \gamma}
\end{aligned}
$$

$\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma$ results

$$
\begin{aligned}
Q_{1-4}^{c} & \sim\left(\ln m_{\mathrm{c}}^{2} / \mu^{2}+\text { const. }+q^{2} \text {-dependent terms }\right) Q_{9} \\
Q_{5,6}^{c} & \sim\left(q^{2} \text {-dependent terms }\right) Q_{7 \gamma} \\
Q_{7-10}^{c} & \sim\left(\ln m_{c}^{2} / \mu^{2}+\text { const. }+q^{2} \text {-dependent terms }\right) Q_{7 \gamma}
\end{aligned}
$$

- We focus for now only on C_{1-4}^{c} for two reasons:
- The coefficient $C_{7 \gamma}$ is strongly constrained, even at leading order ΔC_{5-10} will be forced to be small
- ΔC_{1-4} generate shift in C_{9} at leading order, which we want, and (spoilers) small effect on $C_{7 \gamma}$ from RG mixing

$\Delta \Gamma_{\mathrm{s}}$ results

Width difference can be calculated from this diagram

$\Delta \Gamma_{\mathrm{s}}$ results

Width difference can be calculated from this diagram

$$
\begin{aligned}
& \Gamma_{12}^{c c}=-G_{F}^{2}\left(V_{\mathrm{cs}}^{*} V_{\mathrm{cb}}\right)^{2} m_{b}^{2} M_{B_{s}} f_{B_{s}}^{2} \frac{\sqrt{1-4 z}}{576 \pi} \times \\
& \quad\left\{\left[16(1-z)\left(4\left(C_{2}^{c}\right)^{2}+\left(C_{4}^{c}\right)^{2}\right)\right.\right. \\
& \\
& \quad+8(1-4 z) \times\left(12\left(C_{1}^{c}\right)^{2}+8 C_{1}^{c} C_{2}^{c}+2 C_{3}^{c} C_{4}^{c}+3\left(C_{3}^{c}\right)^{2}\right) \\
& \\
& \left.-192 z \times\left(3 C_{1}^{c} C_{3}^{c}+C_{1}^{c} C_{4}^{c}+C_{2}^{c} C_{3}^{c}+C_{2}^{c} C_{4}^{c}\right)\right] B \\
& \\
& +2(1+2 z) \times\left[4\left(C_{2}^{c}\right)^{2}-8 C_{1}^{c} C_{2}^{c}-12\left(C_{1}^{c}\right)^{2}\right. \\
& \\
& \left.\left.\quad-3\left(C_{3}^{c}\right)^{2}-2 C_{3}^{c} C_{4}^{c}+\left(C_{4}^{c}\right)^{2}\right] \tilde{B}_{S}^{\prime}\right\}
\end{aligned}
$$

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ results

- There are 3 components of the SM calculation of the lifetime
- We use optical theorem to relate these to imaginary parts of loop diagrams

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ results

- There are 3 components of the SM calculation of the lifetime
- Free b-quark decay
- We use optical theorem to relate these to imaginary parts of loop diagrams

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ results

- There are 3 components of the SM calculation of the lifetime
- Free b-quark decay
- QCD corrections to free b-quark decay
- We use optical theorem to relate these to imaginary parts of loop diagrams

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ results

- There are 3 components of the SM calculation of the lifetime
- Free b-quark decay
- QCD corrections to free b-quark decay
- Weak annihilation diagrams
- We use optical theorem to relate these to imaginary parts of loop diagrams

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ results

$$
\begin{aligned}
& \left(\frac{\tau_{B_{s}}}{\tau_{B_{d}}}\right)_{\mathrm{NP}}=G_{F}^{2} \left\lvert\, V_{c b} V_{c s}{ }^{2} m_{b}^{2} M_{B_{s}} f_{B_{s}}^{2} \tau_{B_{s}} \frac{\sqrt{1-4 z}}{144 \pi} \times\right. \\
& \left\{\begin{array}{l}
(1-z)\left[\left(4\left(3 C_{1}^{c}+C_{2}^{c}\right)^{2}+\left(3 C_{3}^{c}+C_{4}^{c}\right)^{2}\right)^{2} B_{1}\right. \\
\\
\left.+6\left(4 C_{2}^{c, 2}+C_{4}^{c, 2}\right) \epsilon_{1}\right] \\
\\
-12 z\left[\left(3 C_{1}^{c}+C_{2}^{c}\right)\left(3 C_{3}^{c}+C_{4}^{c}\right) B_{1}+6 C_{2}^{c} C_{4}^{c} \epsilon_{1}\right] \\
\\
-(1+2 z)\left[\left(4\left(3 C_{1}^{c}+C_{2}^{c}\right)^{2}+\left(3 C_{3}^{c}+C_{4}^{c}\right)^{2}\right) B_{2}\right. \\
\\
\left.\left.\quad+6\left(4 C_{2}^{c, 2}+C_{4}^{c, 2}\right) \epsilon_{2}\right]\right\}
\end{array}\right.
\end{aligned}
$$

Low scale Wilson coefficient shifts

- Using the results described above, we can see what kind of shifts are allowed at low scales

Low scale Wilson coefficient shifts

Low scale Wilson coefficient shifts

- Very interesting feature is the non-negligible q^{2} dependence
- In other BSM models (e.g. leptoquarks or Z^{\prime}), this does not appear

Low scale Wilson coefficient shifts

- Very interesting feature is the non-negligible q^{2} dependence
- In other BSM models (e.g. leptoquarks or Z^{\prime}), this does not appear
- "The NP hypothesis requires a q^{2} independent shift in C9" (1503.06199, Altmannshofer \& Straub)

Renormalisation Group Running

- Looking at constraints on low scale Wilson coefficients not a particularly realistic scenario
- Expect our effective operators to be generated at the weak scale or above by some new physics
- Have to include the effect of RG running ...

Operator Mixing

- In order to compute RG effects, need a set of operators closed under RG mixing
- Starting with $Q_{1-4}^{c}, Q_{7 \gamma}, Q_{9}$ we have to add 4 QCD penguins and chromodipole operator $Q_{8 \mathrm{~g}} \sim\left(\overline{\mathrm{~s}} \sigma^{\mu \nu} T^{a} P_{R} \mathrm{~b}\right) G_{\mu \nu}^{a}$
- Get an 11×11 anomalous dimension matrix - many components already known, but mixing of $Q_{3,4}^{c}$ into Q_{9} and $Q_{7 \gamma}$ are new

Operator Mixing

- In order to combute RG effects. need a set of operators

Operator Mixing

- In order to compute RG effects, need a set of operators closed under RG mixing
- Starting with $Q_{1-4}^{c}, Q_{7 \gamma}, Q_{9}$ we have to add 4 QCD penguins and chromodipole operator $Q_{8 \mathrm{~g}} \sim\left(\overline{\mathrm{~s}} \sigma^{\mu \nu} T^{a} P_{R} \mathrm{~b}\right) G_{\mu \nu}^{a}$
- Get an 11×11 anomalous dimension matrix - many components already known, but mixing of $Q_{3,4}^{c}$ into Q_{9} and $Q_{7 \gamma}$ are new

Operator Mixing - new results

- Mixing into Q_{9} can be read off from logarithmic terms in our result for $\mathrm{B} \rightarrow X_{\mathrm{s}} \gamma$ results
- Mixing into $Q_{7 \gamma}$ arises at two loops

Wilson Coefficients RG Running

$$
\left(\begin{array}{c}
\Delta C_{1}(\mu) \\
\Delta C_{2}(\mu) \\
\Delta C_{3}(\mu) \\
\Delta C_{4}(\mu) \\
\Delta C_{7 \gamma}(\mu) \\
\Delta C_{9}(\mu)
\end{array}\right)=\left(\begin{array}{cccc}
1.12 & -0.27 & 0 & 0 \\
-0.27 & 1.12 & 0 & 0 \\
0 & 0 & 0.92 & 0 \\
0 & 0 & 0.33 & 1.91 \\
0.02 & -0.19 & -0.01 & -0.13 \\
8.48 & 1.96 & -4.24 & -1.91
\end{array}\right)\left(\begin{array}{c}
\Delta C_{1}\left(\mu_{0}\right) \\
\Delta C_{2}\left(\mu_{0}\right) \\
\Delta C_{3}\left(\mu_{0}\right) \\
\Delta C_{4}\left(\mu_{0}\right)
\end{array}\right)
$$

High scale NP

- With the RG running calculated, we can see how much the Wilson coefficients would need to shift at the weak scale to explain the P_{5}^{\prime} anomaly.
- This is a more realistic scenario, as some high scale NP would alter the Wilson coefficients at that high scale
$N P$ in C_{1}^{c}, C_{2}^{c}

$N P$ in C_{1}^{c}, C_{2}^{c}

$N P$ in C_{1}^{c}, C_{2}^{c}

$N P$ in C_{1}^{c}, C_{3}^{c}

$N P$ in C_{1}^{c}, C_{4}^{c}

$N P$ in C_{2}^{c}, C_{3}^{c}

$N P$ in C_{2}^{c}, C_{4}^{c}

NP in C_{3}^{c}, C_{4}^{c}

Future Prospects

- How can we tell if this is the right approach, and distinguish between NP in the different Wilson coefficients?
- Better knowledge of our 3 flavour observables would shrink the allowed shifts

Future Prospects

- How can we tell if this is the right approach, and distinguish between NP in the different Wilson coefficients?
- Better knowledge of our 3 flavour observables would shrink the allowed shifts
- $\Delta \Gamma_{\text {s }}$ error dominated by theory - use QCD sum rules / pray to the lattice gods

Future Prospects

- How can we tell if this is the right approach, and distinguish between NP in the different Wilson coefficients?
- Better knowledge of our 3 flavour observables would shrink the allowed shifts
- $\Delta \Gamma_{\text {s }}$ error dominated by theory - use QCD sum rules / pray to the lattice gods
- Lifetime ratio - error quite small, depends on how future experimental averages evolve

Future Prospects

- How can we tell if this is the right approach, and distinguish between NP in the different Wilson coefficients?
- Better knowledge of our 3 flavour observables would shrink the allowed shifts
- $\Delta \Gamma_{\text {s }}$ error dominated by theory - use QCD sum rules / pray to the lattice gods
- Lifetime ratio - error quite small, depends on how future experimental averages evolve
- Also issue of scheme dependence of charm mass - effect on our leading order calculation quite strong

Future Prospects

- Our model only involves NP in the quark sector \Longrightarrow other lepton-flavour violating anomalies should revert to SM with more data
- Should $\left(P_{5}^{\prime} / R_{\mathrm{K}} / R_{\mathrm{D}}\right)$ stay or should $\left(P_{5}^{\prime} / R_{\mathrm{K}} / R_{\mathrm{D}}\right)$ go \ldots

Work in progress

- Work so far covers just 4 possible operators
- Give the most "obvious" solutions ...

Work in progress

- Work so far covers just 4 possible operators
- Give the most "obvious" solutions ...
- We looked only at real shifts in the Wilson coefficients
- Had we chosen imaginary shifts, the constraints from $\Delta \Gamma$ get worse, while those from semi-leptonic asymmetry get a lot stronger

Work in progress

- Work so far covers just 4 possible operators
- Give the most "obvious" solutions ...
- We looked only at real shifts in the Wilson coefficients
- Had we chosen imaginary shifts, the constraints from $\Delta \Gamma$ get worse, while those from semi-leptonic asymmetry get a lot stronger
- Could also look at shifts in more than 2 Wilson coefficients simultaneously, and/or NP Wilson coefficients as arbitrary complex numbers

Summary

- Tried to explain the P_{5}^{\prime} anomaly in a model independent way
- Renormalisation group running effects are very important - rather than a shift $\Delta C_{1} \sim-0.5$ at the B meson scale, only a shift of $\Delta C_{1} \sim-0.1$ at the weak scale
- As such small shifts can fit the anomaly, improved bounds are needed if the anomaly persists and we want to distinguish different scenarios

Backup

Definition of P_{5}^{\prime}

$$
P_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}}
$$

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+S_{6}^{s} \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& \left.S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

Definition of $\Delta \Gamma, a_{s l}$

$$
\begin{aligned}
\Delta \Gamma & =-2\left|\Gamma_{12}\right| \cos \left(\arg \left(\frac{\Gamma_{12}}{M_{12}}\right)\right) \\
a_{s l} & =\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \left(\arg \left(\frac{\Gamma_{12}}{M_{12}}\right)\right)
\end{aligned}
$$

