Leptoquarks from above and below

Matthew Kirk

27 Oct 2023

Intro to me

- PhD (2014-2018): Here in IPPP
- With Alex Lenz

Intro to me

- PhD (2014-2018): Here in IPPP
- With Alex Lenz

Intro to me

- PhD (2014-2018): Here in IPPP
- With Alex Lenz
- La Sapienza, Rome (2018-2021)
- Mostly working with Marco Nardecchia

Intro to me

- PhD (2014-2018): Here in IPPP
- With Alex Lenz
- La Sapienza, Rome (2018-2021)
- Mostly working with Marco Nardecchia
- UB, Barcelona (2021-2023)
- Mostly working with Federico Mescia

Interests

- PhD was mostly on B physics, particularly B meson mixing
- Moved into some BSM via the bsll anomalies
- Generally interested in anomalies (e.g. CAA) and simple model building, global fits and computer tools

Now

- Working with Danny and Ery to carefully study $(\bar{b} s)(\bar{c} c)$ operators - can we properly disentangle QCD and NP?

Now let's talk physics

1) Using neutrino telescopes to search for LQs?
2) LQs without leptons for bsle anomalies?
3) Using neutrino telescopes to search for LQs? (based on 2307 . 11152 with Keyun Wu and Shohei Okawa)

$$
\nu q \rightarrow \mathrm{LQ}
$$

- If LQs exist, they can be generated in an schannel diagram from a neutrino-quark initial state
- And on-shell if the centre-of-mass energy is large enough
- How large?

$\nu N \rightarrow \mathrm{LQ}$

- $\sqrt{s}=\sqrt{2 E_{\nu} m_{N}}$
- For $m_{N} \sim 1 \mathrm{GeV}, \sqrt{s} \sim 1.4 \mathrm{TeV} \sqrt{E_{\nu} / 10^{6} \mathrm{GeV}}$
- Where can I get a 1000 TeV neutrino source?

UHE neutrinos

- Astrophysical sources expected to generate neutrinos with energies up to at least 1 exaelectronvolt ($1 \mathrm{EeV}=10^{18} \mathrm{eV}=10^{9} \mathrm{GeV}$!)
- Can we detect these?

UHE neutrino experiments

- Next generation neutrino telescopes will measure neutrino-nucleon cross-section (i.e. neutrino DIS) at ultra-high energies
- GRAND, TAMBO, POEMMA, Trinity, ...
- Enough to tell us anything about BSM?

Measurements of $\sigma(\nu N)$

Detector Requirements for Model-Independent Measurements of
Ultrahigh Energy Neutrino Cross Sections

Ivan Esteban (D) , ${ }^{1,2, *}$ Steven Prohira (D) ,,$^{1,2, \dagger}$ and John F. Beacom (D) $1,2,3, \ddagger$
${ }^{1}$ Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210
${ }^{2}$ Department of Physics, Ohio State University, Columbus, Ohio 43210
${ }^{3}$ Department of Astronomy, Ohio State University, Columbus, Ohio 43210
(Dated: July 11, 2022)
The ultrahigh energy range of neutrino physics (above $\sim 10^{7} \mathrm{GeV}$), as yet devoid of detections, is an open landscape with challenges to be met and discoveries to be made. Neutrino-nucleon cross sections in that range - with center-of-momentum energies $\sqrt{s} \gtrsim 4 \mathrm{TeV}$ - are powerful probes of unexplored phenomena. We present a simple and accurate model-independent framework to evaluate how well these cross sections can be measured for an unknown flux and generic detectors. We also demonstrate how to characterize and compare detector sensitivity. We show that cross sections can be measured to $\simeq_{-30}^{+65} \%$ precision over $\sqrt{s} \simeq 4-140 \mathrm{TeV}\left(E_{\nu}=10^{7}-10^{10} \mathrm{GeV}\right)$ with modest energy and angular resolution and $\simeq 10$ events per energy decade. Many allowed novel-physics models (extra dimensions, leptoquarks, etc.) produce much larger effects. In the distant future, with $\simeq 100$ events at the highest energies, the precision would be $\simeq 15 \%$, probing even QCD saturation effects.

See also

Measurements of $\sigma(\nu N)$

Calculating $\sigma(\nu N)$

- Turns out not just schannel is important, if looking at heavy quark couplings
- Often true since $3^{\text {rd }}$ gen BSM more motivated and collider bounds are weaker

- Gluon initial states also very relevant

Theory uncertainties

- Primarily from PDFs
- Around 5-10\% from any particular PDF
- Plus consider which PDF set to use
- And what target: proton / proton+neutron average / Earth average
- We neglect these entirely

LQ models

- We study two LQ models:
- $R_{2}:(\mathbf{3}, \mathbf{2}, 7 / 6)$
- Can explain $R(D), R\left(D^{*}\right)$ anomalies with large couplings, and has been previously looked at using IceCube data
- $S_{1}:(\mathbf{3}, \mathbf{1},-1 / 3)$
- Had recently (2021) been looked at using specific neutrino telescopes, where they showed potential!

LHC bounds - direct searches

LHC bounds - direct searches

LHC bounds - high pT tails

- Four fermion EFT operators give energy enhanced contributions to the high pT tails at the LHC

LHC bounds - high pT tails

- There is now a software package HighPT which makes is straightforward to check LHC bounds on SMEFT operators with arbitrary flavour structures. HighPT

HighPT:
A Tool for high- \boldsymbol{p}_{T} Drell-Yan Tails Beyond the Standard Model

LHC bounds - high pT tails

- They also include a mode with full model dependence for certain UV models and masses

$$
R(D), R\left(D^{*}\right)
$$

- Anomaly in $b \rightarrow c \nsim$ decays

$R(D), R\left(D^{*}\right)$

$$
R(D), R\left(D^{*}\right)
$$

- For R_{2}, choose two non zero couplings
- $c \tau$ and $b \tau$
- With one imaginary
- $\frac{\left|g_{c \tau} g_{b \tau}\right|}{M_{R_{2}}^{2}} \approx \frac{1}{(1.4 \mathrm{TeV})^{2}}$
improves fit by 3.1σ

Others

- S_{1} mediates $\tau \rightarrow K \nu, D_{s} \rightarrow \tau \nu$
- R_{2} with imaginary couplings gives quark EDMs
- Neutron and mercury measurements
- At 1-loop, modified $Z \rightarrow \tau \tau$

R_{2}

R_{2}

R_{2}

R_{2}

S_{1}

S_{1}

S_{1}

2) LQs without leptons for bsle anomalies?

 (based on 2309. 07205 with Andreas Crivellin)
bsll anomalies

- Since 2013 there have been deviations in $b \rightarrow s \mu \mu$ decays
- For a while we thought these were muon specific, but since Dec 22 it appears not

bsle anomalies

bsll anomalies

bsll anomalies

- Since 2013 there have been deviations in $b \rightarrow s \mu \mu$ decays
- For a while we thought these were muon specific, but since Dec 22 it appears not
- So you need to keep universality in leptons

LQs for bsll

- LQs are natural models for bsll
- But a LQ coupling to multiple lepton generations generally leads to LFV
- Old idea: NP in bscc?

```
JKLL 1701.09183
& 1910.12924
```


Charming new physics in b(eautiful) processes?

(based on 1701.09183)
Sebastian Jäger, Matthew Kirk, Alex Lenz, Kirsten Leslie

13th March 2017

$b s c c \rightarrow b s \ell \ell$

- In the SM, about half of the C_{9} coefficient (bsle EFT operator) generated through charm loops
$b s c c \rightarrow b s \ell \ell$

$b s c c \rightarrow b s \ell \ell$

$b s c c \rightarrow b s \ell \ell$

- In the SM, about half of the C_{9} coefficient (bsll EFT operator) generated through charm loops
- What if some NP modified bscc operators?
- Potential for large bsll effects, plus correlated effects in various precise B meson observables

$b s c c \rightarrow$ bsll

- Potential for large bsll effects, plus correlated effects in various precise B meson observables
- B_{s} meson mixing $\left(\Delta \Gamma_{s}\right)$
- B meson lifetimes $\left(\tau\left(B_{s}\right) / \tau\left(B_{d}\right)\right)$
- $B \rightarrow X_{s} \gamma$

$\mathrm{UV} \rightarrow b s c c$

- What kind of NP can generate bscc after being integrated out?
- Size of anomaly suggests tree level effect
- If tree level b and s interactions, need to avoid tree level B_{s} mixing (known at $\mathrm{O}(3 \%)$ precision)
- Big problem for Z's, or heavy gluon type field

$\mathrm{UV} \rightarrow b s c c$

- Charged Higgs is one option
- Has been re-examined recently $\begin{aligned} & \text { Kumar 2212.07233 } \\ & \text { \& guro 2302.08935 }\end{aligned}$
- But parameter space is quite constrained $\left(M_{H^{+}} \leq 200-250 \mathrm{GeV}\right)$

S_{1}

- Consider the $S_{1}:(\mathbf{3}, \mathbf{1},-1 / 3)$
- In addition to lepton-quark interactions, can write down quark-quark interactions
- Only get $u-d-S_{1}$ terms, not $d-d-S_{1}$ or $u-u-S_{1}$, so safe from meson mixing

$S_{1} \mathrm{LQ}$ without leptons

- In general, having both lepton-quark and quark-quark couplings leads to tree level proton decay
- So often people drop the diquark term
- But instead we drop the lepton-quark term

S_{1} diquark

- $\left(\lambda_{L} \bar{Q}^{c} Q+\lambda_{R} \bar{u}^{c} d\right) S_{1}$
- $\rightarrow \bar{u}^{c}\left(\lambda_{L} P_{L}+\lambda_{R} P_{R}\right) d S_{1}$

S_{1} diquark

- It will turn out that we need the S_{1} to be quite light $-M_{S_{1}} \sim 500 \mathrm{GeV}$
- Integrate it out along with top/Z/W
- Loop calculations give (extra) constraints from B_{s} mixing, $B \rightarrow X_{s} \gamma$, D mixing

Results

Results

- Interestingly, we predict an increase to $\Delta \Gamma_{s}$
- From $90 \times 10^{-3} \mathrm{ps}^{-1}$

$$
\rightarrow 110 \times 10^{-3} \mathrm{ps}^{-1}
$$

Results

- CMS di-di-jet analysis (2206.09997)
- Hints for 500 GeV scalar?

Results

> hep -ph/0011258

- Missing charm puzzle?
- Inclusive $b \rightarrow c \bar{c} s$ rate

New physics in inclusive decays? II

Motivation for a re-analysis of inclusive decays:

■ Old analyses at least 15 years old - input parameters ($m_{b}, m_{c}, V_{C K M}, \ldots$) are now much better known
Missing charm puzzle; semileptonic branching fraction, e.g
Bigi et al '94; Bagan et al. '94; Falk, Wise, Dunietz '95, Buchalla et al '95; Neubert '97; Kagan
'97,98,... A.L. ,hep-ph/0011258

- Theory is now much more reliable! e.g. $b \rightarrow c \bar{c} s$
- Many rare decays were neglected, e.g. $b \rightarrow s g, b \rightarrow u \bar{u} s, \ldots$
- Some NLO-QCD contributions are still missing

Thanks!

BACKUP

UHE neutrino source

Introduction

5/22 What about neutrinos?

The idea is simple:
Ultra-high energy proton flux \Rightarrow Ultra-High Energy neutrino flux

$$
\begin{array}{rl}
\prod p & p+e^{-}+\bar{\nu}_{e} \\
\gamma_{\mathrm{bkg}} \Rightarrow \Delta^{+} \Rightarrow n+ & \pi^{+} \\
& \hookrightarrow \\
& \mu^{+}+\nu_{\mu} \\
& \hookrightarrow \\
\bar{\nu}_{\mu}+e^{+}+\nu_{e}
\end{array}
$$

Greisen-Zatsepin-Kuzmin, 1966
For $E_{p} \gtrsim 10^{9} \mathrm{GeV}$, we expect this flux at $E_{\nu} \sim 10^{7}-10^{10} \mathrm{GeV}$

$$
\phi_{\nu} \sim 1-100 \nu / \mathrm{km}^{2} / \text { year }
$$

UHE neutrino source

Introduction

What about neutrinos?

Ultra-high energy proton flux \Rightarrow Ultra-High Energy neutrino flux

Auger, ICRC2021

Heinze et al, 1901.03338
(Of course, sources could also directly produce neutrinos)

UHE neutrino experiments

UHE neutrinos

Flavour composition of neutrinos

- 2011.03561

Fraction of ν_{e}

— HESE with ternary topology ID
* Best fit: $0.20: 0.39: 0.42$
Global Fit (IceCube, APJ 2015)
Inelasticity (IceCube, PRD 2019)
3ν-mixing 3σ allowed region

ATLAS di-jet

- 1804.03496
σ^{σ}

