Anomalies in Flavour Physics (and how (not) to solve them)

Matthew Kirk

University

IPPP Internal Seminar
March 2018

What anomalies have we got?

- Lepton flavour universality violation
- $R_{K}, R_{K^{*}}: b \rightarrow$ sll
- $R_{D}, R_{D^{*}}: b \rightarrow c \tau v$
- Angular observables

$$
-P_{5}^{\prime}: \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{1} d \cos \theta_{K} d \phi}
$$

- Branching ratios
- $B^{-} \rightarrow K^{-} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu, B_{s} \rightarrow \phi \mu \mu$

$R_{D}, R_{D^{*}}$

$R_{K}, R_{K^{*}}$

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

Observable	SM prediction	Measurement			
$R_{K}: q^{2}=[1,6] \mathrm{GeV}^{2}$	1.00 ± 0.01	$\\| 1,2]$	$0.745_{-0.074}^{+0.090} \pm 0.036$	$\mid 3]$	
$R_{K^{*}}^{\text {low }}: q^{2}=[0.045,1.1] \mathrm{GeV}^{2}$	0.92 ± 0.02	$\\| 4]$	$0.660_{-0.070}^{+0.110} \pm 0.024$	$\mid 5]$	
$R_{K^{*}}^{\text {central }}: q^{2}=[1.1,6] \mathrm{GeV}^{2}$	1.00 ± 0.01	$[1,2]$	$0.685_{-0.069}^{+0.113} \pm 0.047$	$\mid 5]$	

P_{5}^{\prime}

$$
\begin{aligned}
\frac{1}{\mathrm{~d} \Gamma / d q^{2}} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

$$
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}}
$$

$b \rightarrow s \mu \mu$

- Do global fits to relevant processes

New physics in the muon sector									
Wilson coeff.	Best-fit			1- σ range			$\sqrt{\chi_{\text {SM }}^{2}-\chi_{\text {best }}^{2}}$		
	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
$C_{b_{L} \mu_{L}}^{\mathrm{BSM}}$	-1.33	-1.33	-1.33	$\begin{aligned} & -0.99 \\ & -1.70 \end{aligned}$	$\begin{aligned} & -1.01 \\ & -1.68 \end{aligned}$	$\begin{aligned} & -1.10 \\ & -1.58 \end{aligned}$	4.1	4.6	6.2
$C_{b_{L} \mu_{R}}^{\mathrm{BSM}}$	0.68	-0.73	-0.35	$\begin{aligned} & 1.27 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \hline-0.40 \\ & -1.03 \end{aligned}$	$\begin{aligned} & \hline-0.03 \\ & -0.65 \end{aligned}$	1.2	2.1	1.1
$C_{b_{R} \mu_{L}}^{\mathrm{BSM}}$	0.03	-0.20	-0.15	$\begin{gathered} \hline 0.32 \\ -0.26 \end{gathered}$	$\begin{aligned} & -0.04 \\ & -0.29 \end{aligned}$	$\begin{aligned} & -0.01 \\ & -0.25 \end{aligned}$	0.1	1.3	1.1
$C_{b_{R} \mu_{R}}^{\mathrm{BSM}}$	-0.44	0.41	0.29	$\begin{gathered} \hline 0.14 \\ -1.00 \end{gathered}$	$\begin{aligned} & 0.61 \\ & 0.18 \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.07 \end{aligned}$	0.8	1.7	1.3

New physics in the electron sector									
Wilson coeff.	Best-fit			1- σ range			$\sqrt{\chi_{\text {SM }}^{2}-\chi_{\text {best }}^{2}}$		
	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
$C_{b_{L} e_{L}}^{\mathrm{BSM}}$	1.72	0.15	0.99	$\begin{aligned} & 2.31 \\ & 1.21 \end{aligned}$	$\begin{gathered} \hline 0.69 \\ -0.39 \end{gathered}$	$\begin{aligned} & 1.30 \\ & 0.70 \end{aligned}$	4.1	0.3	3.5
$C_{b_{L} e_{R}}^{\mathrm{BSM}}$	-5.15	-1.70	-3.46	$\begin{aligned} & -4.23 \\ & -6.10 \end{aligned}$	$\begin{gathered} \hline 0.33 \\ -2.83 \end{gathered}$	$\begin{aligned} & -2.81 \\ & -4.05 \end{aligned}$	4.3	0.9	3.6
$C_{b_{R} e_{L}}^{\mathrm{BSM}}$	0.085	-0.51	0.02	$\begin{gathered} \hline 0.39 \\ -0.21 \end{gathered}$	$\begin{gathered} \hline 0.29 \\ -1.55 \end{gathered}$	$\begin{gathered} \hline 0.30 \\ -0.25 \end{gathered}$	0.3	0.7	0.1
$C_{b_{R} e_{R}}^{\text {BSM }}$	-5.60	2.10	-3.63	$\begin{aligned} & \hline-4.66 \\ & -6.56 \end{aligned}$	$\begin{gathered} 3.52 \\ -2.70 \end{gathered}$	$\begin{aligned} & \hline-2.65 \\ & -4.43 \end{aligned}$	4.2	0.5	2.5

1704.05438

- "Clean" observables favour NP in LH quarks \& electrons or muons
- Including "dirty" favours muons over electrons

$b \rightarrow s \mu \mu$

New physics in the muon sector (Vector Axial basis)									
Wilson coeff.	Best-fit			1- σ range			$\sqrt{\chi_{\text {SM }}^{2}-\chi_{\text {best }}^{2}}$		
	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
$C_{9, \mu}^{\mathrm{BSM}}$	-1.51	-1.15	-1.19	$\begin{aligned} & -1.05 \\ & -2.08 \end{aligned}$	$\begin{aligned} & \hline-0.98 \\ & -1.31 \end{aligned}$	$\begin{aligned} & -1.04 \\ & -1.35 \end{aligned}$	3.9	5.5	6.7
$C_{10, \mu}^{\mathrm{BSM}}$	1.13	0.48	0.69	$\begin{aligned} & \hline 1.49 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.28 \end{aligned}$	$\begin{aligned} & \hline 0.86 \\ & 0.52 \end{aligned}$	4.0	2.4	4.3
$C_{9, \mu}^{\prime \text { BSM }}$	-0.08	-0.24	-0.22	$\begin{gathered} \hline 0.20 \\ -0.37 \end{gathered}$	$\begin{gathered} \hline 0.44 \\ -0.15 \end{gathered}$	$\begin{aligned} & \hline-0.14 \\ & -0.33 \end{aligned}$	0.3	1.7	1.6
$C_{10, \mu}^{\text {BSM }}$	-0.09	0.10	0.08	$\begin{gathered} \hline 0.14 \\ -0.33 \end{gathered}$	$\begin{aligned} & \hline 0.19 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & 0.00 \end{aligned}$	0.4	1.2	1.0

$$
\begin{array}{ll}
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}}\left(V_{t s}^{*} V_{t b}\right) & \sum_{i} C_{i}^{\ell}(\mu) \mathcal{O}_{i}^{\ell}(\mu) \\
\mathcal{O}_{7}^{(\prime)}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\alpha \beta} P_{R(L)} b\right) F^{\alpha \beta}, & C_{7}^{S M}=-0.319, \\
\mathcal{O}_{9}^{\ell\left({ }^{\prime}\right)}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\alpha} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\alpha} \ell\right), & C_{9}^{S M}=4.23, \\
\mathcal{O}_{10}^{\ell\left({ }^{\prime}\right)}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\alpha} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\alpha} \gamma_{5} \ell\right) . & C_{10}^{S M}=-4.41 .
\end{array}
$$

1704.05438

Models to explain the anomalies

- We want to generate coupling to LH b/s and LH muons
- Z' , leptoquarks, composite Higgs, SUSY, ...
- Quite a few possibilities - but in any UV model, obviously generate other operators
- Couplings to b and $\mathrm{s} \Rightarrow B_{\mathrm{s}}$ mixing can (strongly) constrain

Current status of B_{s} mixing

- Theory
- 2015 (1511.09466)
- 18.3 ± 2.7 ps $^{-1}$
- 2017 (1712.06572)
- 20.01 ± 1.25 ps $^{-1}$
- Experiment
- LHCb (2012-15), CDF (2006)
- 17.757 ± 0.021 ps $^{-1}$

Current status of B_{s} mixing

- Theory
- 2015 (1511.09466)
- 18.3 ± 2.7 ps $^{-1}$
~ 0.25σ
- Experiment
- LHCb (2012-15), CDF (2006)
- 17.757 ± 0.021 ps $^{-1}$
- 2017 (1712.06572)
- 20.01 ± 1.25 ps $^{-1}$

Why big change in SM?

- Important input parameter: $f_{B_{s}} \sqrt{B}$
- $\Delta M_{s} \propto f_{B_{s}}^{2} B$, contributes $>90 \%$ of uncertainty
- Non-perturbative - generally determined by lattice
- Other approaches available (e.g. sum rules (see 1711.02100))
- Fermilab-MILC collaboration produced new result
- Incorporated by FLAG (lattice averaging group)
- $f_{B_{s}} \sqrt{B}: 270 \pm 16 \mathrm{MeV} \rightarrow 274 \pm 8 \mathrm{MeV}$

Limits on Z' model (2015)

Limits on Z' model (2017)

Limits on Z' model (2017)

Stronger B_{s} mixing constraints

- Roughly a factor 5 in mass limits
- Actually a generic feature of the new result (if $\kappa>0$)

Avoiding constraint

- Simple Z' model \rightarrow Z' mass must be below ~ 3 TeV
- Rather than minimising the effect, how can we use our NP to improve the fit with B_{s} mixing result?
- Need to get a negative contribution to ΔM_{s}

"Solving" ΔM_{s} discrepancy

- Complex couplings
- What other constraints come in?
- LH and RH quark couplings
- Any interesting RG effects?

- Does this affect the fit to the $b \rightarrow s$ mu mu anomalies?

Complex Coupling

- Most global fits done assuming real couplings - 1703.09247 a notable exception
- How does the best fit region change?

Complex Coupling

- Not much dependence on the imaginary part
- Can see this by expanding in $\frac{C^{N P}}{C^{S M}}$, which we assume to be small.

$$
R_{K} \approx 1+\mathfrak{R}\left(\frac{C_{\mathrm{LL}}^{N P}}{C_{\mathrm{LL}}^{S M}}\right)
$$

Complex Coupling

- As soon as we have complex couplings

\rightarrow new sources of CP violation
\rightarrow new constraints

- For B_{s} mixing, mixing induced CP asymmetry

LH and RH quark couplings

- Extra operators mean we can get different sign from interference term
- Also get RG running effects

$$
\begin{aligned}
\mathcal{L}_{Z^{\prime}}^{\text {eff }} \supset-\frac{1}{2 M_{Z^{\prime}}^{2}} & {\left[\lambda_{23}^{Q}\right)^{2}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)^{2}+\left(\lambda_{23}^{d}\right)^{2}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)^{2} } \\
& \left.+2 \lambda_{23}^{0} \lambda_{23}^{d}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\tilde{s}_{R} \gamma_{\mu} b_{R}\right)+\text { h.c. }\right] .
\end{aligned}
$$ which slightly enhance the LR term relative to LL or RR

LH and RH quark couplings

- Extra operators mean we can get different sign from interference term
- Also get RG running effects which slightly enhance the LR term relative to LL or RR

How light can we go?

- If complex or different chirality couplings don't work, are we okay to just have a light Z'?
-What constraints are there on low masses?

How light can we go?

- If complex or different chirality couplings don't work, are we okay to just have a light Z'?
-What constraints are there on low masses?
- Neutrino trident production (assumes $S U(2)_{L}$ invariance of NP)
- $Z \rightarrow 4 \mu$ (well measured as background for $H \rightarrow Z Z^{*} \rightarrow 4 \mu$)

How light can we go?

- If complex okay to jus
- What cons $\sqrt{\frac{5}{c}} 0.006$

I't work, are we

Summary

- B_{s} mixing provides a strong constraint on any NP coupling to b and s
- Using the latest inputs gives 2 sigma tension
- Want to solve $b \rightarrow s \mu \mu$ anomalies and improve B_{s} mixing fit?
- Complex coupling? Ruled out by $A_{C P}^{m i x}$
- Coupling to left and right handed quarks? Doesn't work with $R_{K}, R_{K^{*}}$
- Light Z'? Neutrino trident production and $Z \rightarrow 4 \mu$ on your tail

