Anomalies in Flavour Physics (and how (not) to solve them)

Matthew Kirk

IPPP Internal Seminar March 2018

What anomalies have we got?

- Lepton flavour universality violation
 - $R_K, R_{K^*}: b \rightarrow sll$
 - $-R_D, R_{D^*}: b \rightarrow c \tau \nu$
- Angular observables

$$-P_{5}':\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{l}d\cos\theta_{K}d\phi}$$

- Branching ratios
 - $-B^{-} \rightarrow K^{-} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu, B_{s} \rightarrow \phi \mu \mu$

R_D, R_{D^*}

$$R_K, R_{K^*}$$

$$R_{K^{(*)}} = \frac{\mathcal{B}\left(B \to K^{(*)}\mu^{+}\mu^{-}\right)}{\mathcal{B}\left(B \to K^{(*)}e^{+}e^{-}\right)}$$

Observable	SM prediction		Measurement	
$R_K: q^2 = [1, 6] \text{GeV}^2$	1.00 ± 0.01	[1, 2]	$0.745^{+0.090}_{-0.074} \pm 0.036$	[3]
$R_{K^*}^{\text{low}}: q^2 = [0.045, 1.1] \text{GeV}^2$	0.92 ± 0.02	[4]	$0.660^{+0.110}_{-0.070} \pm 0.024$	[5]
$R_{K^*}^{\text{central}}: q^2 = [1.1, 6] \text{GeV}^2$	1.00 ± 0.01	[1, 2]	$0.685^{+0.113}_{-0.069} \pm 0.047$	[5]

1704.06240

$$P_{5}$$

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}\phi \, \mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos\phi + S_5 \sin 2\theta_K \sin\theta_\ell \cos\phi \\ & + S_6 \sin^2\theta_K \cos\theta_\ell + S_7 \sin 2\theta_K \sin\theta_\ell \sin\phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \, \right], \end{split}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$$

$b \rightarrow s \mu \mu$

Do global fits to relevant processes

New physics in the muon sector									
Wilson	Best-fit			1 - σ range			$\sqrt{\chi^2_{ m SM} - \chi^2_{ m best}}$		
coeff.	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
$C_{b_L\mu_L}^{ m BSM}$	C_{l}^{BSM} -1.33	-1.33	-1.33	-0.99	-1.01	-1.10	4.1	4.6	6.2
$\begin{array}{c c} C_{b_L\mu_L} & -1.55 \end{array}$	1.00	-1.55	-1.70	-1.68	-1.58	4.1	1.0	0.2	
CBSM	$C_{b_L\mu_R}^{\mathrm{BSM}}$ 0.68	-0.73	-0.35	1.27	-0.40	-0.03	1.2	2.1	1.1
$b_L \mu_R$				0.10	-1.03	-0.65			
$C_{b_R\mu_L}^{ m BSM}$	$C_i^{\text{BSM}} = 0.03$	-0.20	-0.15	0.32	-0.04	-0.01	0.1	1.3	1.1
$b_{R}\mu_{L}$ 0.03	-0.20	-0.15	-0.26	-0.29	-0.25	0.1	1.5	1.1	
	0.41	0.29	0.14	0.61	0.50	0.8	1.7	1.3	
	-0.44	0.41	0.29	-1.00	0.18	0.07	0.8	1.1	1.0

New physics in the electron sector									
Wilson	Best-fit			1 - σ range			$\sqrt{\chi^2_{\rm SM} - \chi^2_{\rm best}}$		
coeff.	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
CBSM	$C_{b_L e_L}^{\mathrm{BSM}}$ 1.72	0.15	0.99	2.31	0.69	1.30	4.1	0.3	3.5
$\cup_{b_L e_L}$				1.21	-0.39	0.70			
CBSM		-1.70	-3.46	-4.23	0.33	-2.81	4.3	0.9	3.6
$C_{b_L e_R}$				-6.10	-2.83	-4.05			
CBSM	CBSM 0.005	0.51	0.00	0.39	0.29	0.30	0.2	0.7	0.1
$\begin{array}{c c} C_{b_R e_L}^{\rm BSM} & 0.085 \end{array}$	-0.51	0.02	-0.21	-1.55	-0.25	0.3	0.7	0.1	
CBSM	CBSM F CO	2.10	2.62	-4.66	3.52	-2.65	4.2	0.5	0.5
$C_{b_Re_R}^{Boll}$	-5.60		-3.63	-6.56	-2.70	-4.43			2.5

1704.05438

- "Clean" observables favour NP in LH quarks & electrons or muons
- Including "dirty" favours muons over electrons

$b \rightarrow s \mu \mu$

New physics in the muon sector (Vector Axial basis)									
Wilson	Best-fit			1 - σ range			$\sqrt{\chi^2_{\mathrm{SM}} - \chi^2_{\mathrm{best}}}$		
coeff.	'clean'	'dirty'	all	'clean'	'dirty'	all	'clean'	'dirty'	all
$C_{9,\mu}^{\mathrm{BSM}}$	-1.51	-1.15	-1.19	-1.05 -2.08	-0.98 -1.31	-1.04 -1.35	3.9	5.5	6.7
$C_{10,\mu}^{\mathrm{BSM}}$	1.13	0.48	0.69	1.49 0.81	0.69 0.28	0.86 0.52	4.0	2.4	4.3
$C_{9,\mu}^{\prime ext{BSM}}$	-0.08	-0.24	-0.22	0.20 -0.37	$0.44 \\ -0.15$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.3	1.7	1.6
$C_{10,\mu}^{\prime \mathrm{BSM}}$	-0.09	0.10	0.08	0.14 -0.33	0.19 0.01	0.16 0.00	0.4	1.2	1.0

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \left(V_{ts}^* V_{tb} \right) \sum_i C_i^{\ell}(\mu) \, \mathcal{O}_i^{\ell}(\mu)$$

$$\mathcal{O}_7^{(')} = \frac{e}{16\pi^2} \, m_b \left(\bar{s} \sigma_{\alpha\beta} P_{R(L)} b \right) F^{\alpha\beta} \,, \qquad C_7^{SM} = -0.319,$$

$$\mathcal{O}_9^{\ell(')} = \frac{\alpha_{\text{em}}}{4\pi} \left(\bar{s} \gamma_{\alpha} P_{L(R)} b \right) (\bar{\ell} \gamma^{\alpha} \ell) \,, \qquad C_9^{SM} = 4.23,$$

$$\mathcal{O}_{10}^{\ell(')} = \frac{\alpha_{\text{em}}}{4\pi} \left(\bar{s} \gamma_{\alpha} P_{L(R)} b \right) (\bar{\ell} \gamma^{\alpha} \gamma_5 \ell). \qquad C_{10}^{SM} = -4.41.$$

1704.05438

Models to explain the anomalies

- We want to generate coupling to LH b/s and LH muons
- Z', leptoquarks, composite Higgs, SUSY, ...

- Quite a few possibilities but in any UV model, obviously generate other operators
- Couplings to b and $s \Rightarrow B_s$ mixing can (strongly) constrain

Current status of B_s mixing

- Theory
 - *-* 2015 (1511.09466)
 - $18.3 \pm 2.7 \ ps^{-1}$
 - 2017 (1712.06572)
 - $20.01\pm1.25 \ ps^{-1}$

- Experiment
 - LHCb (2012-15), CDF (2006)
 - $17.757 \pm 0.021 \, ps^{-1}$

Current status of B_s mixing

- Theory
 - 2015 (1511.09466)
 - $18.3 \pm 2.7 \ ps^{-1}$

~ 0.25 σ

-1.80

- 2017 (1712.06572)
 - $20.01\pm1.25 \ ps^{-1}$

- Experiment
 - LHCb (2012-15), CDF (2006)
 - $17.757 \pm 0.021 \, ps^{-1}$

Why big change in SM?

- Important input parameter: $f_{B_c}\sqrt{B}$
 - $\Delta M_s \propto f_{B_s}^2 B$, contributes > 90% of uncertainty
- Non-perturbative generally determined by lattice
 - Other approaches available (e.g. sum rules (see 1711.02100))
- Fermilab-MILC collaboration produced new result
 - Incorporated by FLAG (lattice averaging group)
 - $f_B \sqrt{B}$: 270±16 MeV → 274±8 MeV

Limits on Z' model (2015)

Limits on Z' model (2017)

Limits on Z' model (2017)

Stronger B_s mixing constraints

- Roughly a factor 5 in mass limits
- Actually a generic feature of the new result (if $\kappa > 0$)

$$\frac{\Delta M_s^{\text{Exp}}}{\Delta M_s^{\text{SM}}} = \left| 1 + \frac{\kappa}{\Lambda_{\text{NP}}^2} \right| \implies \frac{\Lambda_{\text{NP}}^{2017}}{\Lambda_{\text{NP}}^{2015}} = \sqrt{\frac{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2015}} - 1}{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2017}} - 1}} \simeq 5.2$$

Avoiding constraint

- Simple Z' model → Z' mass must be below ~ 3 TeV
- Rather than minimising the effect, how can we use our NP to improve the fit with B_s mixing result?
- Need to get a negative contribution to ΔM_s

"Solving" ΔM_s discrepancy

- Complex couplings
 - What other constraints come in?
- LH and RH quark couplings
 - Any interesting RG effects?

Does this affect the fit to the b→s mu mu anomalies?

Complex Coupling

- Most global fits done assuming real couplings 1703.09247 a notable exception
- How does the best fit region change?

Complex Coupling

Not much dependence on the imaginary part

• Can see this by expanding in $\frac{C^{NP}}{C^{SM}}$, which we assume to be small.

$$R_{K} \approx 1 + \Re \left(\frac{C_{\mathrm{LL}}^{NP}}{C_{\mathrm{LL}}^{SM}} \right)$$

Complex Coupling

- As soon as we have complex couplings
 - → new sources of CP violation
 - → new constraints
- For B_s mixing, mixing induced CP asymmetry

LH and RH quark couplings

- Extra operators mean we can get different sign from interference term
- Also get RG running effects which slightly enhance the LR term relative to LL or RR

$$\mathcal{L}_{Z'}^{\text{eff}} \supset -\frac{1}{2M_{Z'}^2} \left[(\lambda_{23}^Q)^2 \left(\bar{s}_L \gamma_\mu b_L \right)^2 + (\lambda_{23}^d)^2 \left(\bar{s}_R \gamma_\mu b_R \right)^2 + 2\lambda_{23}^Q \lambda_{23}^d (\bar{s}_L \gamma_\mu b_L) (\bar{s}_R \gamma_\mu b_R) + \text{h.c.} \right].$$

LH and RH quark couplings

- Extra operators mean we can get different sign from interference term
- Also get RG running effects which slightly enhance the LR term relative to LL or RR

How light can we go?

- If complex or different chirality couplings don't work, are we okay to just have a light Z'?
- What constraints are there on low masses?

How light can we go?

- If complex or different chirality couplings don't work, are we okay to just have a light Z'?
- What constraints are there on low masses?
 - Neutrino trident production (assumes $SU(2)_L$ invariance of NP)
 - Z → 4 μ (well measured as background for H → ZZ^* → 4 μ)

How light can we go?

Summary

- B_s mixing provides a strong constraint on any NP coupling to b and s
- Using the latest inputs gives 2 sigma tension
- Want to solve $b \rightarrow s \mu \mu$ anomalies and improve B_s mixing fit?
 - Complex coupling? Ruled out by A_{CP}^{mix}
 - Coupling to left and right handed quarks? Doesn't work with $\,R_{\scriptscriptstyle K}$, $R_{\scriptscriptstyle K^*}$
 - Light Z'? Neutrino trident production and $Z \rightarrow 4 \mu$ on your tail