What is the ultimate precision of mixing variables?

Matthew Kirk ${ }^{1}$

31 March 2017

[^0]
Outline

(1) Flavour Physics - motivations
(2) Background

Common assumptions in theory What is duality?
(3) Duality violation with B mesons

Violation in decays
How accurate can theory get?
(4) Duality violation in charm sector

Charm vs. HQE
Duality violation to the rescue?
(5) Summary and Outlook

Why do flavour physics?

- To test our understanding of QCD
- To develop theoretical tools (e.g. SMEFT, SCET)
- Determining parameters of SM (around half are relevant for flavour)

On a more practical level:

- There is plenty of data to go around
- Our theories work well (but not too well!)

Underlying assumptions

What assumptions should we revisit?

- Size of penguin contributions
- How large can NP at tree-level be?
- How well does QCD factorisation work?

- To what extent does quark-hadron duality work?

What is quark-hadron duality?

What does quark-hadron duality mean?
Idea dates from over 40 years ago

- 1970: e-p scattering - Blom, Gilman
- 1979: $\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow$ hadrons - Poggio, Quinn, Weinberg

What do we mean by duality?
Quark-hadron duality corresponds to Heavy Quark Expansion (HQE), and duality violation to deviations from it.

HQE and duality violation

HQE is a Taylor expansion in $\frac{\Lambda}{m_{b}}$.
E.g. decay rate

$$
\Gamma=\Gamma_{0}+\frac{\Lambda^{2}}{m_{\mathrm{b}}^{2}} \Gamma_{2}+\frac{\Lambda^{3}}{m_{\mathrm{b}}^{3}} \Gamma_{3}+\ldots
$$

Imagine a term like $\exp \left(-m_{\mathrm{b}} / \Lambda\right)-$ Taylor expansion is exactly 0 .

HQE and duality violation

Expansion parameter is really $\Lambda / \sqrt{m_{i}^{2}-m_{f}^{2}}$ - channel dependent

Channel	Expansion parameter x	$\exp [-1 / x]$
$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}$	$\Lambda / \sqrt{m_{\mathrm{b}}^{2}-4 m_{\mathrm{c}}^{2}} \approx 0.05-0.6$	$10^{-8}-0.18$
$\mathrm{~b} \rightarrow \mathrm{c} \overline{\mathrm{u} s}$	$\Lambda / \sqrt{m_{\mathrm{b}}^{2}-m_{\mathrm{c}}^{2}} \approx 0.045-0.5$	$10^{-10}-0.13$
$\mathrm{~b} \rightarrow$ uūs	$\Lambda / \sqrt{m_{\mathrm{b}}^{2}} \approx 0.04-0.5$	$10^{-11}-0.12$

We see that a "non-perturbative" term can easily give 20-30\% corrections

Meson mixing

- Mass difference $\Delta M \approx 2\left|M_{12}\right|$ - due to off-shell particles, so can get contributions from heavy NP.
- Decay rate difference $\Delta \Gamma \approx 2\left|\Gamma_{12}\right| \cos \phi$ - due to on-shell particles, so free from NP (at least at first sight).

Large hadronic uncertainties in M_{12} and Γ_{12} - take ratios to improve theory predictions

- $\Delta \Gamma / \Delta M=-\operatorname{Re}\left(\Gamma_{12} / M_{12}\right)$
- $a_{s l}=\operatorname{Im}\left(\Gamma_{12} / M_{12}\right)$

Decay difference calculation

The decay rate difference gets three contributions from internal (cc, uc, uu) quarks, with CKM factors $\lambda_{q}=V_{q b} V_{q s}^{*}$

$$
\Gamma_{12}=-\lambda_{\mathrm{c}}^{2} \Gamma_{12}^{\mathrm{cc}}-2 \lambda_{\mathrm{c}} \lambda_{\mathrm{u}} \Gamma_{12}^{\mathrm{uc}}-\lambda_{\mathrm{u}}^{2} \Gamma_{12}^{\mathrm{uu}}
$$

Use CKM unitarity to show GIM and CKM suppression

$$
\frac{\Gamma_{12}}{M_{12}}=-\frac{\Gamma_{12}^{\mathrm{cc}}}{\widetilde{M}_{12}}-2 \frac{\lambda_{\mathrm{u}}}{\lambda_{\mathrm{t}}} \frac{\left(\Gamma_{12}^{\mathrm{cc}}-\Gamma_{12}^{\mathrm{uc}}\right)}{\widetilde{M}_{12}}-\frac{\lambda_{\mathrm{u}}^{2}}{\lambda_{\mathrm{t}}^{2}} \frac{\left(\Gamma_{12}^{\mathrm{cc}}-2 \Gamma_{12}^{\mathrm{uc}}+\Gamma_{12}^{\mathrm{uu}}\right)}{\widetilde{M}_{12}}
$$

Breaking GIM suppression with duality violation

- Non-leading terms in Γ_{12} are GIM suppressed
- We expect duality violation to be stronger in certain decay channels
- This breaks the GIM suppression - duality violation could give potentially large change in observables

We take

$$
\begin{aligned}
& \Gamma_{12}^{\mathrm{cc}} \rightarrow \Gamma_{12}^{\mathrm{cc}}\left(1+\delta^{\mathrm{cc}}\right) \\
& \Gamma_{12}^{\mathrm{uc}} \rightarrow \Gamma_{12}^{\mathrm{uc}}\left(1+\delta^{\mathrm{uc}}\right) \\
& \Gamma_{12}^{\mathrm{uu}} \rightarrow \Gamma_{12}^{\mathrm{uu}}\left(1+\delta^{\mathrm{uu}}\right)
\end{aligned}
$$

with $\delta^{\mathrm{cc}} \geq \delta^{\mathrm{uc}} \geq \delta^{\mathrm{uu}}$.

Limits on duality violation from $\Delta \Gamma_{s}$ - future

 possibilitiesCurrently, our duality violating parameters can go up to 30% this bound is dominated by theory error. Duality violation then can lead to factor ~ 3 increase in $a_{s l}^{\mathrm{s}}$.

Limits on duality violation from B lifetimes

Very similar diagrams contribute to B lifetimes as to Γ_{12}.

(a) $\tau\left(\mathrm{B}_{\mathrm{s}}\right)$

(b) Γ_{12}

BUT: in (a) all decay modes of B_{s} contribute, while in (b) only modes shared by B_{s} and \bar{B}_{s} are involved.

Limits on duality violation from B lifetimes

Take simplified model for duality violation $\left(\delta^{\mathrm{cc}}=4 \delta^{\mathrm{uu}}, \delta^{\mathrm{uc}}=2 \delta^{\mathrm{uu}}\right)$

Future limits

Reduction in error from experiment would allow much better constraints on duality violation.

Aggressive theory predictions

Observable	SM - conservative	SM - aggressive	Experiment
ΔM_{s}	$(18.3 \pm 2.7) \mathrm{ps}^{-1}$	$(20.11 \pm 1.37) \mathrm{ps}^{-1}$	$(17.757 \pm 0.021) \mathrm{ps}^{-1}$
$\Delta \Gamma_{\mathrm{s}}$	$(0.088 \pm 0.020) \mathrm{ps}^{-1}$	$(0.098 \pm 0.014) \mathrm{ps}^{-1}$	$(0.082 \pm 0.006) \mathrm{ps}^{-1}$
$a_{s l}^{\mathrm{s}}$	$(2.22 \pm 0.27) \cdot 10^{-5}$	$(2.27 \pm 0.25) \cdot 10^{-5}$	$(-7.5 \pm 4.1) \cdot 10^{-3}$
$\Delta \Gamma_{\mathrm{s}} / \Delta M_{\mathrm{s}}$	$48.1(1 \pm 0.173) \cdot 10^{-4}$	$48.8(1 \pm 0.125)$	$46.2(1 \pm 0.073) \cdot 10^{-4}$
ΔM_{d}	$(0.528 \pm 0.078) \mathrm{ps}^{-1}$	$(0.606 \pm 0.056) \mathrm{ps}^{-1}$	$(0.5055 \pm 0.0020) \mathrm{ps}^{-1}$
$\Delta \Gamma_{\mathrm{d}}$	$(2.61 \pm 0.59) \cdot 10^{-3} \mathrm{ps}^{-1}$	$(2.99 \pm 0.52) \cdot 10^{-3} \mathrm{ps}^{-1}$	$(0.658 \pm 6.579) \cdot 10^{-3} \mathrm{ps}^{-1}$
$a_{s l}^{\mathrm{d}}$	$(-4.7 \pm 0.6) \cdot 10^{-4}$	$(-4.90 \pm 0.54) \cdot 10^{-4}$	$(-1.5 \pm 1.7) \cdot 10^{-3}$
$\Delta \Gamma_{\mathrm{d}} / \Delta M_{\mathrm{d}}$	$49.4(1 \pm 0.172) \cdot 10^{-4}$	$49.3(1 \pm 0.49)$	$13.0147(1 \pm 10) \cdot 10^{-3}$

Our aggressive estimates use the recent lattice results from Fermilab-MILC ${ }^{1}$ for dimension- 6 operators, which also inspire our estimates for dimension-7 bag parameters.

Status of charm mixing

- In 2012 (courtesy of LHCb), charm mixing established at 9σ
- HFAG 2016 result:
$x=(3.2 \pm 1.4) \cdot 10^{-3}, y=6.9_{-0.7}^{+0.6} \cdot 10^{-3}$

Status of charm mixing

Charm vs. the HQE

- HQE calculation of charm mixing gives a result around 3 order of magnitude too small
- In contrast, exclusive approach gives correct ballpark figure, but not a first principles approach (e.g. Falk, Grossman, Ligeti, (Nir,) Petrov ${ }^{1}$)

Why doesn't HQE work?

- Are hadronic effects to blame? Can be tested with HQE prediction of D lifetimes - Lenz, Rauh ${ }^{1}$
- Do we need to calculate higher dimensional terms with less GIM suppression? Bigi, Uraltsev²; Bobrowski, Lenz, Riedl, Rohrwild ${ }^{3}$
- Or is new physics to blame?

[^1]
How does duality violation affect D mixing?

Similar to B system, take

$$
\begin{array}{r}
\Gamma_{12}^{\mathrm{ss}} \rightarrow \Gamma_{12}^{\mathrm{ss}}\left(1+\delta^{\mathrm{ss}}\right) \\
\Gamma_{12}^{\mathrm{sd}} \rightarrow \Gamma_{12}^{\mathrm{sd}}\left(1+\delta^{\mathrm{sd}}\right) \\
\Gamma_{12}^{\mathrm{dd}} \rightarrow \Gamma_{12}^{\mathrm{dd}}\left(1+\delta^{\mathrm{dd}}\right)
\end{array}
$$

with $\delta^{\text {ss }} \geq \delta^{\text {sd }} \geq \delta^{\text {dd }}$.

How does duality violation affect D mixing?

How does duality violation affect D mixing?

Duality violation of as little as 20% can match experimental result - factor 1000 increase!

Summary

- Best constraints on duality violation come from $\Delta \Gamma_{\mathrm{s}} / \Delta M_{\mathrm{s}}$
- From these limits, $a_{s l}^{s}$ cannot be enhanced by more than factor of ~ 3
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- Best constraints on duality violation come from $\Delta \Gamma_{\mathrm{s}} / \Delta M_{\mathrm{s}}$
- From these limits, $a_{s l}^{s}$ cannot be enhanced by more than factor of ~ 3
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- From these limits, $a_{s l}^{s}$ cannot be enhanced by more than factor of ~ 3
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- From these limits, $a_{s l}^{s}$ cannot be enhanced by more than factor of ~ 3
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Complementary bounds from studying $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ currently consistent
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Experimental improvement in $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ vital, lattice update of colour-suppressed operators needed
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Experimental improvement in $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ vital, lattice update of colour-suppressed operators needed
- New lattice results reduce errors, but shift slight away from experiment
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Experimental improvement in $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ vital, lattice update of colour-suppressed operators needed
- Further lattice calculations needed
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Experimental improvement in $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ vital, lattice update of colour-suppressed operators needed
- Further lattice calculations needed
- Charm mixing could be evidence of small duality violation

Looking forward

- More precise measurements of $\Delta \Gamma_{s}$ would help distinguish NP from duality violation.
- $a_{s l}^{\text {s }}$ above $\sim 7 \cdot 10^{-5}$ would unambiguously indicate NP
- Experimental improvement in $\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ vital, lattice update of colour-suppressed operators needed
- Further lattice calculations needed
- Test HQE in lifetimes, calculate higher dimensional contributions to mixing

Thanks!

Backup

Aggressive assumptions

- Most recent lattice results (Fermilab-MILC, arXiv:1602.03560)
- Shows VIA works very well for dim-6 operators ($B \in[0.8,1.2]$) \Rightarrow use smaller errors for dim-7 operators $(B=1 \pm 0.2)$
- Most recent CKM inputs
- Use exact equations of motion for dim-7 operators

$\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)$ - colour suppressed operators

$$
\tau\left(\mathrm{B}_{\mathrm{s}}\right) / \tau\left(\mathrm{B}_{\mathrm{d}}\right)=1.0005 \pm 0.0011
$$

80% of error from colour suppressed operators, $\epsilon_{1,2}$

$$
\begin{gathered}
\langle B|\left(\overline{\mathrm{b}} \gamma_{\mu}\left(1-\gamma^{5}\right) T^{a} \mathrm{q}\right) \otimes\left(\overline{\mathrm{q}} \gamma^{\mu}\left(1-\gamma^{5}\right) T^{\mathrm{a}} \mathrm{~b}\right)|B\rangle=f_{\mathrm{B}}^{2} M_{\mathrm{B}}^{2} \epsilon_{1} \\
\langle B|\left(\overline{\mathrm{b}}\left(1-\gamma^{5}\right) T^{a} \mathrm{q}\right) \otimes\left(\overline{\mathrm{q}}\left(1-\gamma^{5}\right) T^{a} \mathrm{~b}\right)|B\rangle=f_{\mathrm{B}}^{2} M_{\mathrm{B}}^{2} \epsilon_{2}
\end{gathered}
$$

2001 determination (Becirevic, hep-ph/0110124):
$\epsilon_{1}=-0.02 \pm 0.02, \epsilon_{2}=0.03 \pm 0.01$

[^0]: ${ }^{1}$ based on arXiv:1603.07770 - Jubb, MK, Lenz, Tetlalmatzi-Xolocotzi

[^1]: ${ }^{1} 1305.3588$
 ${ }^{2}$ hep-ph $/ 0005089$
 ${ }^{3} 1002.4794$

