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● Future outlook and summary
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Why are we interested in form 
factors?
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Why are we interested in form factors?
● Semi-leptonic decays are very interesting

– E.g. for determining CKM elements, but also 
potential BSM

● Consider               which is used to extract  
● But                    should also give access to 
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Why are we interested in form factors?

Belle 0706.2231

Chiang, Rosen, Shapiro, Handler,
 Olsen, Pondrom 1972

https://arxiv.org/abs/0706.2231
https://inspirehep.net/literature/74909
https://inspirehep.net/literature/74909
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● Hadronic quantities
●  

–  
–  
–  

What is a form factor?
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What is a form factor?
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What is a form factor?
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Simple case: pion form factor
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How do we describe form factors?
● Common parameterisation uses a conformal 

mapping from      plane to 
– First used for form factors in Meiman (1963, JETP), 

Okubo (1971, PRD)
– Made famous by BGL parameterisation
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Conformal mapping
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● Common parameterisation uses a conformal 
mapping from      plane to 

● Why is this useful?
● Need to understand dispersive bounds...

How do we describe form factors?
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Overview of dispersive bounds
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● Write                     in both inclusive (i.e. 
perturbative quark level) and exclusive (sum 
over meson states) way

● Inclusive ≥ Exclusive
– Inclusive we calculate in QCD using OPE
– Exclusive depends on form factor

Dispersive bounds in 1 slide
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Dispersive bounds in 3 slides
● Consider                      ~~~O~~~
●      is analytic, except on the positive real axis, 

where there are poles from resonances
● Use Cauchy to write 
● Analytic structure means we can write this as
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Dispersive bounds in 3 slides
●                                         
● For      very large and negative, LHS is calculable 

using an OPE
● While imaginary part related to on-shell 

intermediate states
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Dispersive bounds in 3 slides
●                                                              
● Look just at two particle terms: 
● By crossing symmetry, this is just our form factor!
● RHS is a sum of positive terms, so we can drop 

terms and just replace the equality with an 
inequality. This is the basic dispersive bound!
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Simplifying the dispersive bound
● Often we write                     , for some functions    
● Ideally chosen such that, given our Cauchy 

integral, the RHS reduces to  
● So the dispersive bound becomes a simple 

bound on parameters 



19

Simplifying the dispersive bound
● Can be tricky to choose      properly

– See Nico’s work with Méril, Danny, Javier on sub 
threshold poles

● For our analysis of the pion form factor, we did 
not find a nice choice 
– See later in this talk for what the issues are

2305.06301 (Gubernari, Reboud, van Dyk, Virto)

https://arxiv.org/abs/2305.06301
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Apply the conformal mapping
● Found    
● (…) comes from inclusive calculation, Cauchy 

denominator, plus phase space factors – usually 
written as        and called the outer function
– Note the outer function is fixed for any transition

● Now change from      to 
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Apply the conformal mapping
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Apply the conformal mapping
●  
● Write  
● Polynomials     useful since 
● Dispersive bound become extremely simple!
● Just 
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What about above threshold data?
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Data in the above threshold region
● Can we also use data 

here as part of the fit?
● In 1998, Buck & Lebed 

studied this problem

Belle 0805.3773

https://arxiv.org/abs/0805.3773
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Data in the above threshold region
● Can we also use data 

here as part of the fit?
● In 1998, Buck & Lebed 

studied this problem
● They found no, get 

spurious oscillations 
near threshold

Buck, Lebed (hep-ph/9802369)

https://arxiv.org/abs/hep-ph/9802369
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What went wrong?
● For               , our expansion parameter has              !
● Does the sum even converge?
● Yes – see section IV of Buck Lebed 1998

– Roughly speaking: the form factor has a physically 
well defined quantity along the cut in      , Abel’s 
theorem guarantees the series converges to that limit

https://arxiv.org/abs/hep-ph/9802369
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Buck Lebed 1998
● An issue they discuss is that with                           ,      

   picks up two incorrect behaviours from  
●     has a zero at                =>    blows up 
● Asymptotic behaviour of    as                  leads to  
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What’s wrong? And how do we fix it?
● Neither is physical

– Experiment tells us    is finite near threshold
– And large energy QCD can be used to show 

● What we do: explicitly modify the outer function 
to correct the behaviour in the two limits
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What’s new?
● We have to reproduce 

the    pole in our 
parameterisation

● Hard to see how a 
polynomial expansion 
can fit this behaviour

Belle 0805.3773

https://arxiv.org/abs/0805.3773
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What’s new?
● It can be shown that the pole is on the second 

Riemann sheet
– So at a      value outside the unit disk

● “As known from general principles of quantum 
field theory” 
– Caprini, Grinstein, Lebed 2017
– Grinstein & Lebed 2015

https://arxiv.org/abs/1705.02368
https://arxiv.org/abs/1509.04847


31

The new look
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The new look

● Physical pole at      ✅
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The new look

● Physical pole at      ✅
● Finite at threshold ✅
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The new look

● Physical pole at      ✅
● Finite at threshold ✅
● Correct large energy limit  ✅
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What about the dispersive bound
● Dispersive bound is of the form 
● With the standard form (                           ), the 

bound nicely simplifies to 
● But with our form (with explicit pole factors), 

doesn’t simplify like that
– We were unable to come up with a form that 

preserves the simple dispersive bound expression
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New parameterisation
●  

– Physical pole at      ✅
– Finite at threshold ✅
– Correct large energy limit  ✅
– Dispersive bound on parameters not manifest  😥

● Let’s feed in some data and see what we get
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Results
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Pion form factor data
●                   : depends on                            , measured 

by Belle and CLEO
●              scattering: depends on                          , 

measured by NA7
●                  : depends on                           , measured 

by JLAB      



39

Pion form factor data
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Imposing conditions on our FF
● For equal mass quarks, our current is a 

conserved current 
● Angular momentum conservation tells us that 

near threshold
● Impose these by fixing two expansion 

coefficients 
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Fits to different order
● With our constraints, if we truncate at order N, 

we have N-1 free expansion parameters
● Plus two parameters from    pole – mass and 

width
● So for order N truncation, we have a total of 

N+1 parameters to fit to our 94 data points
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Fits to different order
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Fits to different order
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Fits to different order
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Fits to different order
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Fits to different order
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   pole parameters
● We extract the    mass 

and width from our fit
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   pole parameters
● We extract the    mass 

and width from our fit
● Stable under 

increasing order of 
the expansion
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   pole parameters
● We extract the    mass 

and width from our fit
● Stable under 

increasing order of 
the expansion
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   pole parameters
● Our N=5 fit gives                 

                               

for    pole location
● Reasonable agreement 

with PDG which comes 
from other methods
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Alternative analyses
● Using analyticity, one can determine the 

magnitude if you know the phase on the branch 
cut up to infinity

● Extract the phase up to inelastic threshold, 
model the phase in the inelastic region
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Comparison to other work
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Future outlook and summary



54

Going forward
● Now we have successful proof of concept, we 

are working on the               case
– Allows a fit to

● Ask me later about Cabibbo angle anomaly
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Summary
● We came up with a new way to parameterise 

form factors
– Valid both above and below threshold, explicitly 

including resonance poles
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Summary
● We came up with a new way to parameterise 

form factors
● Allows to fit to data from all parts of phase 

space
– But unlike other parameterisations, don’t need phase 

data to infinity
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Summary
● We came up with a new way to parameterise 

form factors
● Allows to fit to data from all parts of phase 

space
● Proof of concept for pion form factor

– Clear how to extend to e.g.              , isospin breaking 
in pions, ...
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BACKUP
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Experts: why not Blaschke factors? 
● For subthreshold poles, one can multiply by a 

Blaschke factor
–  

● Which removes a pole at 
● Above threshold,                           so dispersive 

bound simplifies better
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Why not Blaschke factors? 
● Could we not write our form factor as 

–                                                            ?
● Since this still has the pole at the    ? 
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Why not Blaschke factors? 
● Could we not write our form factor as 

–                                                            ?
● Since this still has the pole at the    ? 
● No! Now it has two zeros at                    , which are 

inside the unit circle
– While in general some FFs are known not to have 

zeros on first Riemann sheet ❌
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Constraints on FF
● Want 
● Define 

– So 

● One condition on the 
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Constraints on FF
● We want 
● Note                       , 
● Expand f around -1:

–  
–  

● Impose                                         <= another condition
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Pion form factor data
● Data exists on the pion FF in several different 

kinematic regions
● From NA7 paper:
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Zeros on real axis



66

Fitting semi-leptonic data
●                             
● For semi-leptonic region,           is real and 

– E.g. for                 , can choose      such that                      , 
for                 ,

● The sum converges, and quickly
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