The Cabibbo Angle Anomaly – the bigger picture

Matthew Kirk

Beyond the Flavour Anomalies V – 11 April 2024

CKM Matrix

- 3x3 unitary matrix, by construction
- Implies many relationships between elements
 - 9 complex elements, but only 4 parameters
- Including:

$$-|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

First row unitarity

- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- $|V_{ub}|^2$ is very small, less than current uncertainties
- So we can approximate: $|V_{ud}|^2 + |V_{us}|^2 = 1$

Cabibbo approximation

- For a 2x2 unitary matrix, there is a very simple form: $\begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix}$
- With only one parameter the Cabibbo angle!

Cabibbo Angle

• SM makes a clear prediction:

 $\theta_C = \arccos V_{ud} = \arcsin V_{us} = \arctan V_{us}/V_{ud}$

- But doesn't predict the value

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

What changed?

- Improvements to lattice QCD
- Nuclear corrections to beta decay
 - Δ_R^V : Nucleus independent radiative corrections / inner correction (d → u vs neutron → proton)
 - δ_{NS} : nuclear structure uncertainties (neutron → proton vs ¹⁴O → ¹⁴N vs ³⁴Ar → ³⁴Cl vs ⁷⁴Rb → ⁷⁴Kr vs ...)

Nuclear corrections

• Lots of recent progress in the $\gamma - W$ box EW radiative correction using various methods

Nuclear corrections

• Lots of recent progress in the $\gamma - W$ box EW radiative correction using various methods

Nuclear corrections

- Lots of recent progress in the $\gamma - W$ box EW radiative correction using various methods
- Reassessment of nuclear structure uncertainties in progress

Aside on beta decay

- Opportunities and open questions in modern beta decay
 - arXiv: 2403.08485
- "As is well known, beta decay is full of surprises and subtleties. Its apparent perversities have threatened us not once but twice with the abandonment of some of our cherished conservation laws"

What's behind this?

- Low energy EFT
- EW scale modifications
- BSM models

Low energy EFT

- Modifications of $2q2\ell$ decays
 - Checks from LFU tests of π, K decays
 - Good fit to BSM in $(\bar{u}\gamma^{\mu}P_Ld)(\bar{e}\gamma_{\mu}P_L\nu_e)$ 2101.07811 (Crivellin, Müller, Schnell)
- Modifications of 4ℓ decays affects G_F
 - Since G_F is a normalisation for semileptonic decays
 - Reduces tensions but doesn't solve it

EW scale modifications

- Modifications of W q q' or $W \ell \nu$
- For both: SU(2) invariance demands changes to Z-q-q or $Z-\ell-\ell$
 - Other constraints from EWPO, low energy parity violation or $\Delta F=2$

EW scale modifications

 $K_{\ell 3}$

 ΔM_D

.....

- Modifications of RH W - u - d and W - u - s
- Pull of 3.2σ relative to SM

- Leptoquarks
- W'
- Vector-like leptons
- Vector-like quarks

- Leptoquarks
- W'
- Vector-like leptons
- Vector-like quarks

- Can generate RH
 currents
- Only one of two tree level BSM options

• 7 representations that couple to SM at tree level

•	Name	U	D	Q_1	Q_5	Q_7	T_1	T_2
	Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$

- SU(2) singlets/triplets modify LH W coupling
- (Only one) SU(2) doublet generates RH W couplings

• Only $Q_1 \, SU(2)$ doublet generates RH W couplings

$$-\mathcal{L} \supset -\xi_i^u \overline{Q_1} \tilde{H} u_i - \xi_i^d \overline{Q_1} H d_i$$

- Q_1 with u and d couplings alters V_{ud}
- Q_1 with u and s couplings alters V_{us}
- EWPO less strong, meson mixing almost absent, low energy PV important

Links to other BSM - sterile neutrinos

MeV Sterile Neutrino in light of the Cabibbo-Angle Anomaly

Teppei Kitahara^{1,2,*} and Kohsaku Tobioka^{3,4,†} 2308.13003

 O(1-10) MeV neutrino, 5% mixing with electron neutrino

• But need ~30 TeV BSM to avoid LFUV in leptonic pion/kaon decay $(M \rightarrow e\nu/M \rightarrow \mu\nu)$

Links to other BSM – M_W

Beta-decay implications for the W-boson mass anomaly (Cirigliano, Dekens, de Vries, Mereghetti, Tong) 2204.08440

- In SMEFT, M_W modified by $O_{HD}, O_{HWB}, O_{H\ell}^{(3)}, O_{\ell\ell}$
- Latter two via G_F, and as mentioned changes to G_F affect CKM determinations
- Best fit to EW only data
 => % CKM unitarity
 violation
- Reduce by including C_{lq}, but then violates bounds from Drell-Yan tails

Links to other BSM – tau decays

- Belle II data on tau decay to strange hadrons will give better sensitivity to different BSM operators involving strange
 ^{2112.02087} (Cirigliano, Calderón, Falkowski, Gon
- Recent new determination of V_{us} from inclusive tau decays using lattice

2112.02087 (Cirigliano, Díaz-Calderón, Falkowski, González-Alonso, Rodríguez-Sánchez)

- Neutron lifetime
 - Current PDG average for lifetime and g_A not competitive with superallowed beta decays

$$\frac{1}{\tau_n} \propto G_F^2 V_{ud}^2 (1 + 3g_A^2) (1 + \text{RC})$$

- PIONEER (v. long term)
 - Pion beta decay, currently known at ~0.6%, need order of magnitude improvement to be competitive with super-allowed beta decay
 - Factor of 3 in phase II, factor 10 in phase III hopefully

- PIONEER (not quite so long term)
 - In Phase I, measure $\pi^+ \rightarrow \mu \nu/\pi^+ \rightarrow e \nu$
 - Check LFUV, useful for VLL models

Summary

- Still appears to be a ${\sim}3\,\sigma$ anomaly in CKM unitarity
- Q_1 VLQ seem a good BSM candidate
- Interesting links between CAA to neutrino sector, MW, tau decays, general EW and collider physics

Discussion points

- Can neutron lifetime measurements converge?
- What progress will be made in V_{us} from tau?
- RH currents from g_A (exp vs lattice)?
- Discovering a VLQ or VLL at Belle II?
- Are there other low energy precision observables we should be including in global fits?

Backup

Future experiments?

- NA62 could measure $K_{\ell 3}/K_{\mu 2}$
- Two weeks of data could increase tension to $4\,\sigma$
 - See 2208.11707

(Cirigliano, Crivellin, Hoferichter, Moulson)

- Also new data in $K_{\mu 2}$ would be good
 - Only recent data from KLOE in 2008

Neutron lifetime, gA

RH currents from axial coupling

• If neutron lifetime precision confirms CAA, useful to look at axial coupling more carefully for signs of **RH** currents

•
$$g_A^{\text{exp}} = g_A^{\text{LQCD}} (1 + 2\delta^{\text{RC}} - 2\epsilon_R)$$

2202.10439 Cirigliano, de Vries, Hayen, Mereghetti, Walker-Loud

Cabibbo Angle

$$\theta_C = \arccos V_{ud} = \arcsin V_{us} = \arctan V_{us}/V_{ud}$$

Low energy EFT ideas

- Modifications of GF / muon decay
- Reduces tensions but doesn't solve it

EW scale modifications

- Modifications of LH W-u-d
- Pull of 2σ relative to SM

EW modifications

41

- LQs
- W'
- VLLs
- VLQs

- Lots of related flavour constraints
- PV, D/K mixing
- Also LHC Drell-Yan

- LQs
- W'
- VLLs
- VLQs

- Often comes with a Z'
- That leads to Z mass change, $\Delta F=2,\,\mathrm{PV}$
- Again Drell-Yan

- LQs
- W'
- VLLs
- VLQs

- Also alter EW fit through modifications of $Z \ell \ell$
- Decent fit with two
 VLLs (one with µ
 coupling, one with e)

2008.01113 (Crivellin, Kirk, Manzari, Montull)⁴⁴

VLLs – singlet and triplet

- VLLs coupled to muons and electrons
- Good improvement in CKM data
- And also slight improvement in EWPO
- See 2008.01113

(Crivellin, Kirk, Manzari, Montull)

