Cabibbo Angle Anomaly

Matthew Kirk

La Sapienza, Rome

Anomalies & Precision in the Belle II Era - 7th Sep 2021

CKM matrix (V)

- 3x3 unitary matrix by construction
- We can talk about "unitary conditions", which are SM predictions like any other
- One prediction is "first row unitarity"

$$-|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

As recently as 2018 (1807.01146)

$$-|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994 \pm 0.0005$$

Good agreement with SM prediction

Graphical view

Beta decay

- Currently, best determination of V_{ud} is from super-allowed beta decays
- 2018 value: $V_{ud} = 0.97420 \pm 0.00021$
 - Dominant contribution to uncertainty is "nucleus independent radiative corrections": Δ_R^V
 - $-V_{ud} = 0.97420 \pm 0.00010(\exp) \pm 0.00018(\Delta_R^V)$

Beta decay

- 2018 value of V_{ud} uses Δ_R^V from 2006 (hep-ph/0510099)
- At end of 2018, new value of Δ_R^V (1807.10197)
- Gives $V_{ud} = 0.97370 \pm 0.00014$
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0005$
 - Using 2020 PDG for V_{us}

Cabibbo Angle Anomaly

•
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0005$$

- 3 sigma tension with SM!
- This is the CAA

Graphical view

Graphical view

What's wrong?

- "Boring" answers:
 - Problem with lattice form factors
 - $f_+(q^2=0)$ used to get V_{us} from semi-leptonic kaon decays, f_{K^+}/f_{π^+} to get V_{us}/V_{ud} from leptonic decays
 - Problem with radiative corrections in beta decay
 - Maybe old 2006 value is closer to truth

What's wrong?

- More fun answer: BSM!
 - Modifying W decays $(qq' \to W \to \ell \nu)$
 - Changes to W q q'
 - Changes to $W \ell \nu$
 - Modifying $2q2\ell$ contact operators $(qq\ell\nu)$
 - Modifying muon decay (4 ℓ) => G_F changes => affects normalisation of V_{ud}, V_{us}

Modifying $W - \ell - \nu$

- Affects determination of V_{us}, V_{ud} but not V_{us}/V_{ud}
- Possible BSM explanations: vector-like leptons,
 W'
- Minimal explanations in tension with EWPO (2008.03261)
- But more complex scenarios can agree with all data (2008.01113)

2008.03261 2008.01113 13

Modifying W - q - q'

- Adding a RH coupling in ud and us can resolve the tension between V_{us} determinations (1911.07821, 2103.05549)
 - But SU(2) invariance means RH quark couplings can affect other observables, e.g. ϵ_K
- Altering LH does not
- Possible BSM explanations: vector-like quarks, W'

Relation to other anomalies

Solving CAA plus:

- CMS $pp o e^+e^-$ (2107.13569, talk by Claudio Andrea Manzari)
- Flavour anomalies (2005.13542)
- $-(g-2)_{\mu}$ (2005.03933)
- $-A_{\rm FB}^b$ (2001.02853)

– ...

Future prospects

- Improved V_{ud} ? Seems unlikely anytime soon
 - Agreement from community on value of Δ_R^V from different methods naive weighted average gives $4\,\sigma$ deviation
- Future V_{us}/V_{ud} ?
 - $R(K_{e3}/\pi_{e3})$ (1911.04685, 2107.14708) is now theoretically cleaner than $R(K_{\mu 2}/\pi_{\mu 2})$
 - More realistic, but unknown timeline

Thanks! Questions?

Backups

Modifying G_F

- Brings best fit closer to unitarity
- But cannot fully resolve the discrepancy between $K_{\ell 3}$ and $K_{\mu 2}$ for V_{us}
- Possible BSM explanation: colour and weak singlet with charge 1 (ϕ^+), can only couple to leptons (2012.09845)

Δ_R^V

- Universal / nucleus independent / inner corrections
- γW box

- 1) Dispersion relations
- 2) Perturbative QCD four-loop Bjorken sum rule
- 3) Combined lattice + dispersion relations

Δ_R^V

$\Delta_R^V \times 10^2$	V_{ud}	Source	$\Delta_{\rm CKM} \times 10^3$	Significance
2.361 ± 0.038	0.97420 ± 0.00021	MS [15, 16]	0.16 ± 0.52	0.3σ
2.467 ± 0.022	0.97370 ± 0.00014	SGPR 3	1.18 ± 0.35	3.3σ
2.426 ± 0.032	0.97389 ± 0.00018	CMS 4	0.81 ± 0.42	1.9σ
2.477 ± 0.024	0.97365 ± 0.00015	SFGJ 5	1.27 ± 0.37	3.5σ
2.462 ± 0.014	0.97373 ± 0.00009		1.12 ± 0.28	3.9σ

- 1) Dispersion relations
- 2) Perturbative QCD four-loop Bjorken sum rule
- 3) Combined lattice + dispersion relations

Also 2012.01580

$$\Delta_R^V = (2.472 \pm 0.018) \times 10^{-2} \Rightarrow 4 \,\sigma$$

2q2l operators

- Many operators ruled out by leptonic pion decay
- Leptoquarks good candidates to generate this operator
- But also constrained by high energy $pp \rightarrow e^+e^-$ (see talk by Claudio)

Sub anomaly

- Not just unitarity that doesn't work
- Also Vus/Vud and Vus don't match up
 - Unless Vud very small (=> very far from unitarity)
- 3 body vs 2 body decays

Notes on modifying W-l-nu

- If we have LFUV NP, then we have to distinguish between lepton flavours in CKM determinations
- Specifically, the "Kl3" method is an average of "Kmu3" and "Ke3", which could be affected differently.