What don't we know?

Matthew Kirk PhD, Particle Physics

A small selection...

- Neutrino masses
- Dark matter
- Inflation
- Matter / antimatter asymmetry
- 3 generations / mass hierarchy
- 4 dimensions

Neutrino Masses

• 3 types, which can turn into one another

• Until this discovery, they were assumed to be massless.

Two ways to explain where the mass comes from

Dark Matter

• All our measurements (going back to 1930s) tell us something is out there

 But it doesn't look like anything we've seen before

• Lots of experiments looking for something new

Inflation

• The universe is very flat and looks the same everywhere

• But it seems too big to be this way

• Inflation is an idea to try and explain this

Matter / Antimatter Asymmetry

• Antimatter is just the same as normal matter

Matter / Antimatter Asymmetry

• Antimatter is just the same as normal matter

• So where is it all?

We think we know – but the numbers don't work

3 of everything

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Leptons spin =1/2			Quarks spin =1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u up	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$\mathcal{V}_{\mathbf{H}}$ heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au _{tau}	1.777	-1	b bottom	4.2	-1/3

3 of everything

• The Standard Model has 3 copies of all the particles that make up matter

But the world around us is only made up of one set

3 of everything

• The Standard Model has 3 copies of all the particles that make up matter

But the world around us is only made up of one set

• So who ordered the other two?

4 of some things

- Our world is 4 dimensional:
 - 3 space
 - 1 time

• Is this even a sensible question to ask?

Thanks!