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Abstract: In this thesis we study quark flavour physics and in particular observables
relating to B meson mixing and lifetimes. Meson mixing arises due to the nature
of the weak interaction, and leads to several related observables that are highly
suppressed in the Standard Model (SM). Alongside meson mixing, lifetimes provide
an insight into rare B processes which can shed light on possible new physics.

Both calculations are based on an Effective Field Theory (EFT) framework, in
particular the Weak Effective Theory. This framework allows us to separate the high
scale effects which are calculable in perturbation theory from the low energy matrix
element which are determined through other means. Within this framework, the
observables are expanded using the Heavy Quark Expansion (HQE) technique, which
utilises the relatively large masses of b and c quarks to reveal a further hierarchy
of corrections. The basics of EFTs and the HQE are explored in detail as an entry
point to the majority of the work in this thesis.

In the rest of the thesis, we take aim at pushing the accuracy of our SM predictions
further: by testing the underlying assumption of Quark-Hadron duality in the HQE;
by studying possible new physics models that can explain the long standing problem
of dark matter as well as recently seen anomalies; and by using alternative approaches
to determining the low energy constants associated with mixing and lifetimes in order
to provide independent and state-of-the-art results.
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Chapter 1

Introduction

Particle physics can be described as the area of physics which concerns itself with
describing the fundamental building blocks of the universe. Its aim is no less lofty
than the construction of a model that can, with minimal input, generate correct
predictions for the interactions on the smallest scales, and allow us to build up
physical laws we can use to describe our world. Our current best working model
of this type is known as the Standard Model (SM) – the nature of the SM will
be described in the rest of this chapter, alongside a brief historical overview of its
construction. Finding ways to clearly test the SM and probe possible extensions to
it is the work which the remainder of this thesis consists of.

1.1 The Standard Model

The SM, as a complete theory, has been developed over an extended period of
time. The start of the journey could well be considered to be the development of
Quantum Electrodynamics (QED) over several decades, from Dirac [6] to Tomon-
aga [7], Schwinger [8, 9], Feynman [10–12], and many others. The other major
constituent parts of the SM were developed in the 1960s and 1970s – the Brout-
Englert-Higgs (BEH) mechanism [13–15]; the unified theory of electroweak interac-
tions by Glashow [16], Weinberg [17], and Salam [18]; the Quantum Chromodynamics
(QCD) Lagrangian by Fritzsch, Gell-Mann, and Leutwyler [19], and the nature of
asymptotic freedom in QCD by Gross and Wilczek [20], and Politzer [21].

The SM is formulated as a quantum field theory (QFT) – the dynamics of the
theory are characterised by the Lagrangian density LSM.2 The SM Lagrangian can

2Typically referred to as just the Lagrangian, which we will do from here on out.
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Field SU(3)c SU(2)L U(1)Y

QL 3 2 1/6
uR 3 1 2/3
dR 3 1 −1/3
LL 1 2 −1/2
eR 1 1 −1
H 1 2 1/2

Table 1.1: Field content of the SM.

be written rather succinctly in the form1

LSM =− 1
4FµνF

µν

+ iψ̄ /Dψ

+ ψiyijψjH + h.c.
+ |DµH |2 − V (H ) ,

(1.1.1)

where successive lines describe, respectively, the kinetic and self-interactions of
gauge fields; the kinetic terms of fermions and their interaction with gauge fields; the
interactions of the fermions with the Higgs field; and the kinetic and self-interactions
of the Higgs field. The SM is a gauge theory, with the Lagrangian having a SU(3)c×
SU(2)L × U(1)Y gauge symmetry. It is also Lorentz invariant, as is required to
be consistent with special relativity. The power of symmetries can be appreciated
here – given we want a renormalisable theory which has SU(3)c × SU(2)L × U(1)Y

gauge symmetries, SO(1, 3) Lorentz symmetry, and the field content in Table 1.1,
Equation 1.1.1 is the only possible Lagrangian we can write.2

In the next two sections, we will break the SM Lagrangian down differently to show
the different gauge groups and their properties.

1.1.1 QCD

QCD is a non-abelian gauge theory, meaning the generators of the symmetry don’t
commute. The symmetry is SU(3)c, where the subscript stands for colour – the label
we use for the gauge charges of QCD. Quarks live in the fundamental representation
of SU(3), while gluons live in the adjoint (from which we need only take that there
are three colours of quarks, but eight colours of gluon).

1Available on t-shirts, mugs, etc. from all good gift shops.
2The issue of a possible right handed neutrino νR, which could in principle be added, is briefly

discussed later in Section 1.3.3.
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Singling out the pure QCD parts of Equation 1.1.1, we have two relatively simple
parts: the QCD gauge field tensor and the covariant derivative that couples quarks
to the gluon field. The gauge field tensor in QCD can be written as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν ,

where Ga is a gluon field, gs is the coupling constant of QCD (also called the strong
coupling constant), and fabc is the antisymmetric structure constant of SU(3). The
covariant derivative for QCD, acting on quarks which exist in the fundamental
representation of SU(3), is

(Dµ)ij = ∂µδij − igsG
a
µt

a
ij , (1.1.2)

where ta are the generators of SU(3) which obey the following useful relations:

taijt
a
jk = CF δij ≡

N2
c − 1
2Nc

δij ,

taijt
a
kl = 1

2

(
δilδkj −

1
Nc

δijδkl

)
.

(The second result can be thought of as a Fierz relation in colour space, see Ap-
pendix A for details.)

1.1.2 Electroweak Theory and the Higgs Mechanism

The other half of the SM is the electroweak sector – the unification of the weak
and electromagnetic interactions into a SU(2)L × U(1)Y gauge group, where the
subscript L stands for left and the subscript Y for weak hypercharge. The respective
gauge field strengths are

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW b

µW
c
ν ,

where εabc is the standard three dimensional Levi-Civita tensor, and

Bµν = ∂µBν − ∂νBµ .

The SU(2) group is labelled left as the electroweak sector explicitly distinguishes
between left and right chiralities – left handed fermions sit in the doublet repre-
sentation of SU(2), while right handed fermions are SU(2) singlets; and as seen
in Table 1.1 the left and right handed fields have different charges under the U(1)
group. This makes the SM a parity violating theory – we will discuss this more in
Sections 1.2.2 and 1.3.2.
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Since the different chiralities sit in different representations of the group, the covariant
derivative acts differently on them – for left handed particles, it takes the form

Dµ = ∂µ − igW a
µ

σa

2 − ig
′YLBµ , (1.1.3)

where σa are the Pauli matrices, while for right handed particles only the weak
hypercharge field acts and it takes the form

Dµ = ∂µ − ig′YRBµ , (1.1.4)

and we have explicitly distinguished the weak hypercharge YL,R for left and right
handed fields to remind the reader that they are not equal. The chiral nature of the
electroweak theory means that a standard Dirac mass term like mψLψR cannot be
simply included, as the left and right handed fields transform differently under the
gauge symmetry. Mass terms for the vector bosons W a

µ and Bµ, like M2
V VµV

µ, are
also not gauge invariant; and yet we know the W and Z bosons are definitely not
massless. The resolution of both these problems is the BEH mechanism [13–15]. By
adding a complex scalar field with a particularly shaped potential, we can arrange
for the field to acquire a vacuum expectation value (VEV), spontaneously breaking
the symmetry obeyed by the SM Lagrangian down to SU(3)c × U(1)EM.

A form of potential that achieves our aims is

V (H ) = −µ2(H †H ) + λ(H †H )2 ,

with µ2, λ > 0 – often known as the “Mexican hat” potential. It is easily seen that
with those choices for the sign of the Higgs potential parameters, the field has a
minimum at

|H | = v√
2
, where v =

√
µ2

λ
̸= 0 and has dimensions of mass .

The non-zero VEV breaks the electroweak symmetry SU(2)L × U(1)Y down to
U(1)EM, i.e. just the symmetry associated with the conservation of electric charge.
After symmetry breaking we can, in the unitary gauge, write the Higgs doublet in
the form

H = 1√
2

 0
v + h

 , (1.1.5)

where h is the field associated with the Higgs boson. In this form, it is most
straightforward to see the origin of the fermion and gauge boson mass terms. We
leave the discussion of the origin of fermion masses to Section 1.2.1 as this is a crucial
part of the broad spectrum of flavour phenomenology. For the gauge bosons, if we
expand the covariant derivative terms in the broken Higgs phase, we find terms with
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two gauge fields and factors of v, g, g′ as coefficients – these look exactly like gauge
boson mass terms. With this procedure we find mixed terms however, like v2W 3

µB
µ.

If we diagonalise the mass matrix for the Bµ and W 3,µ fields, we find one massless
eigenstate and one massive eigenstate, which we will suggestively call Aµ and Z µ

respectively. Defining also the combination W±
µ ≡ 1√

2(W 1
µ ∓ iW 2

µ), we end up with
the following mass terms:

LSM ⊃ −
v2g2

4 W +µW −
µ −

v2(g2 + g′2)
4 Z µZ µ

= −v
2g2

4 W +µW −
µ −

v2g2

8 cos2 θW
Z µZ µ

≡ −M2
W W +µW −

µ −
M2

Z

2 Z µZ µ .

As seen in experiment, we have massive W and Z bosons while the photon stays
massless.

As a final point to round out this brief discussion, we mention the different gauge
choices for the Higgs field. While unitary gauge (which leaves us the form shown
in Equation 1.1.5) is convenient for demonstrating the mass generation mechanism,
for calculational purposes Feynman gauge is generally better, as it improves the
convergence of diagrams with virtual massive electroweak bosons. In this gauge,
along with the W± and Z bosons we also have charged Goldstone scalars ϕ± and
a neutral Goldstone scalar ϕZ . These couple to fermions in a similar way as the
corresponding W± and Z bosons, and so are important for loop corrections; in the
calculation of meson mixing for example (see Section 2.4.2 for more detail) it is
important to consider the Goldstone diagrams.

1.2 Flavour

While the field content of the SM as detailed in Table 1.1 might at first glance seem
relatively modest, there is an complication. We have found an extra two copies of the
up, down, electron, and electron neutrino particles, whose fundamental properties
are exactly the same except for their masses. We say that there are three generations
of quarks and leptons, and refer1 to the six different types of quarks and leptons
as flavours. The different generations give rise to a huge variety of phenomenology,
and the study of quark flavour will be the primary focus of this thesis (although
see Section 1.3.4 and Chapter 7 for some interesting signs involving different lepton

1After a fortuitous trip to a Baskin-Robbins shop [22, 23] by Harald Fritzsch and Murray
Gell-Mann.
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flavours). In flavour physics, processes that change the flavour of particles can occur
through tree-level interactions of the charged W± bosons, or through rarer, so called
Flavour Changing Neutral Current (FCNC), interactions. Why FCNCs are not seen
at tree level in the SM, and are instead much rarer due to being loop-suppressed is
a result of the specific nature of how the BEH mechanism arises in the SM, and we
will discuss this in the next section.

1.2.1 CKM

The method by which fermions gain their mass via the BEH mechanism is slightly
more complex than that for the Z and W bosons, due to the existence of multiple
generations. The generic form of the Yukawa interaction [24] between the Higgs field
and quarks is

L ⊃ Y u
ijQ

i
LH̃ uj

R + Y d
ijQ

i
LHdj

R + h.c.

⊃ v√
2
Y u

ij ui
Luj

R + v√
2
Y d

ijd i
Ldj

R + h.c.
(1.2.1)

where H̃ = iσ2H ∗, i, j are indices in generation space, and we have replaced the
Higgs field with its form in the unitary gauge (see Equation 1.1.5) and dropped
terms without the VEV. As Y u,d need not be diagonal (and certainly not both
simultaneously), we use singular value decomposition to rotate to the basis of quark
mass eigenstates

Mu = v√
2
Uu

LY
u(Uu

R)† , Md = v√
2
Ud

LY
d(Ud

R)† , (1.2.2)

where Uu,d
L,R are four unitary matrices,1 and the mass matrices Mu,d are diagonal in

the quark masses: Mu = diag(mu,mc,mt), Md = diag(md,ms,mb). Now that our
mass Lagrangian is diagonal, what effect does this have on the other terms in the SM
Lagrangian? The gluon, photon, and Z boson fields only couple fermions to their
conjugate states, and so our change of basis has no effect. For photons and gluon,
this result is a consequence of gauge invariance – up and down type quarks exist in
different gauge representations and so they cannot be coupled together in the kinetic
term, where interactions with the gauge bosons arise. For Z bosons, the story is
slightly trickier since the Z is a gauge boson of a broken symmetry. But in the SM
the Z coupling is a combination of electric charge and weak isospin; electric charge is
an unbroken symmetry, and all particles with the same weak isospin happen to have
the same electric charge; hence no FCNC arise for the Z boson. This is why there

1We get four, rather than two as might be expected from standard matrix diagonalisation, as
we are doing singular value decomposition since we need our mass eigenvalues to be ≥ 0.
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are no FCNCs at tree level – the form of the SM prevents them. Extending this
very specific flavour structure to BSM models is the principal of Minimal Flavour
Violation (MFV) [25,26] – all new flavour changing effects follow the pattern shown
in the SM, and are governed by the known Yukawa and CKM structures.

On the contrary, the charged W bosons couple up and down quarks together, and
so the change of basis looks like

uLγ
µdLW

+
µ → uL(Uu

L)γµ(Ud
L)†dLW

+
µ ≡ ui

Lγ
µVijdj

LW +
µ

where we have defined the matrix V ≡ Uu
L(Ud

L)†. This matrix is known as the
Cabibbo–Kobayashi–Maskawa or CKM matrix [27, 28]. Since the indices of the
matrix are related to the quark generations, we often write the elements of V as

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ≈


0.97 0.23 0.0037e−1.1i

−0.22 0.97 0.042
0.0086e−0.39i −0.041 1

 , (1.2.3)

where we show the approximate size of the elements of the CKM matrix using a
recent [29] set of inputs from the CKMfitter group [30,31].1 There are two common
ways of parameterising the CKM matrix – the “standard” parameterisation [34] and
the “Wolfenstein” parameterisation [35]. A general 3 × 3 unitary matrix has nine
“degrees of freedom” in total, which can be broken down into six phases and three real
parameters. However, we can absorb all but one of the phases into the quark fields,
leaving us with just four independent parameters. The standard parameterisation is
given in terms of three mixing angles θ12, θ13, θ23 and one phase δ13:

V =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 (1.2.4)

where sij = sin θij and cij = cos θij, while the Wolfenstein parameterisation uses the
four parameters λ,A, ρ, η:

V =


1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)
. (1.2.5)

The Wolfenstein parameterisation was originally conceived as an expansion in the
small parameter Vus ≈ 0.2, and nicely shows off several features of the CKM matrix
that are seen numerically in Equation 1.2.3:

1The UTfit collaboration [32, 33] also produces similar results, using a different statistical
approach to the fit – in this work we use the CKMfitter results throughout.
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1. It is close to the identity matrix – so transitions between same generation
flavours are the least suppressed.

2. There is the most mixing between the first and second generation, and the
least between the first and third.

3. The complex elements are O
(
λ3
)
, so CP violation is highly suppressed.

Since this parameterisation is not exact, it should not be used for detailed calcula-
tions.

Now that we have seen how flavour changing interactions arise, we make note of
another interesting feature of the SM. Since FCNCs don’t appear at tree level, they
arise at loop level through loops involving the flavour changing W vertices. But
they are suppressed even beyond this. If we consider the amplitude for a loop level
FCNC, changing a quark from flavour i to flavour j, we see it will (schematically at
least) behave like

iM∼
∑

q

ViqV
∗

jq × f(mq) .

In the limit of equal quark masses, the unitarity of the CKM guarantees this ampli-
tude vanishes since if f does not depend on q, we simply get∑q ViqV

∗
jq = ∑

q(V V †)ij =
0 for i ̸= j. This is known as the GIM mechanism [36]1 – loop flavour changing
processes get suppressed as long as they have a weak dependence on the mass of the
quarks in the loop.

The multiple sources of suppression in the flavour sector of the SM for FCNCs means
that they can be ideal places to search for NP – any difference in flavour structure
will likely lift the strong suppression, and greatly enhance the rate for these rare
processes.

1.2.2 CP Violation

In the previous section, we made the point that while the CKM matrix has non-real
elements, they are very small. Why are complex couplings interesting? Because
the CP operator has the effect of replacing coupling constants with their complex
conjugate, and so non-real couplings imply a theory is not CP invariant.

We make a quick aside here about the discrete symmetries of the SM. It has long
been known that the CPT theorem holds for most quantum field theories [37–39] –
which means that any Lorentz invariant local quantum field theory with a Hermitian

1In that work they predicted the existence of the charm quark through the non-observation of
K0 → µ+µ−.
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Hamiltonian must obey CPT symmetry (i.e. symmetry under the combined effects of
the charge conjugation C, parity inversion P , and time reversal T operators). For a
long time, it was assumed that these each held individually as well, until the idea of
a parity violating theory was proposed by Lee and Yang in 1956 [40] and discovered
by Wu, Ambler, Hayward, Hoppes, and Hudson [41] a year later, and CP violation
was found in 1964 by Christenson, Cronin, Fitch, and Turlay [42]. As a result of the
CPT theorem, these results mean that C, P and T must all be violated individually
in nature.

As we will discuss in Section 1.3.2, CP violation is required to reproduce various
observed features of the universe. It is interesting to note that if we had just two
generations of quarks, there would be no physical phases in the CKM matrix (as they
could all be absorbed by rephasing of the quark fields), and so no CP violation could
be present in the flavour sector. Hence the question of why there are (at least) three
generations is intimately tied up with the origin of CP violation in our universe.

It can be shown that the amount of CP violation in the SM can be represented in a
parameterisation independent way by the Jarlskog invariant, which comes from the
commutator of the two quark Yukawa matrices. The original definition [43] (in our
notation) is

det
(
−i
[
Mu

mt

,
Md

mb

])
= − 2

m3
tm

3
b

(mt −mc)(mt −mu)(mc −mu)×

(mb −ms)(mb −md)(ms −md)J (1.2.6)

with (∑
mn

εikmεjln

)
J = Im(VijVklV

∗
ilV

∗
kj) . (1.2.7)

Nowadays, it is more common to discuss the modified invariant, first proposed in [44],
defined by

det
(
−i
[
(Mu)2, (Md)2

])
= −2(m2

t −m2
c)(m2

t −m2
u)(m2

c −m2
u)×

(m2
b −m2

s)(m2
b −m2

d)(m2
s −m2

d)J , (1.2.8)

which has the advantage of removing the unphysical sensitivity to the sign of the
quark masses.

1.3 Beyond the Standard Model?

The Standard Model as detailed in Section 1.1 is, alongside being the most compre-
hensive theoretical description of the fundamental nature of reality, one of the most
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well tested and predictive physical theories ever devised. As an example of this, we
take from ATLAS [45] and CMS [46] Figures 1.1 and 1.2, which summarise cross
section measurements for a variety of different production processes at the LHC and
compare them to the corresponding theoretical prediction. In these measurements,
which span many orders of magnitude, no significant (by which we mean > 5σ)
deviations been observed. This is true across almost the entirety of high energy
particle physics.

However the SM is not (and cannot be) the final theory – there a few areas where
it fails. Notably, the SM does not incorporate gravity and so must inevitably be
superseded one day by a model that combines a full quantum theory of gravity with
the strong and electroweak forces. But even beyond this fundamental weakness, there
are a small number of well known questions in particle physics alone that cannot be
understood in the SM – that of dark matter, the matter-antimatter asymmetry and
neutrino masses.

1.3.1 Dark Matter

The existence of dark matter has a long history in physics, and was one of the earliest
signs of new physics to be found – in fact the history is so long it predates the SM. One
of the earliest suggestions of dark matter can be found in the work of Zwicky, who in
the 1930s used the virial theorem to calculate the mass of the Coma Cluster [47,48],
and found a calculated mass of around 500 times that which was expected based
on the luminosity. This difference he attributed to non-luminous matter or dark
matter. A similar problem, of a discrepancy in the behaviour of astrophysical objects,
appeared in the 1970s following the development of more advanced instruments.
Observations of galactic rotation curves by Rubin and Ford [49] showed that stars
orbiting far out from the centre of galaxies were moving much faster than would be
expected from the observed distribution of matter. With the confirmation of these
findings over the rest of that decade, and more detailed studies since then [50–52],
dark matter became an established part of the scientific scenery.

Further astrophysical observations that reinforce the need for dark matter have not
been slow to arise. On the largest scales, we have seen evidence for DM in the
Cosmic Microwave Background (CMB) [53]. Studying the power spectrum allows us
to infer the relative amounts of regular matter (which interacted with the photons
that formed the CMB) and dark matter which only interacts gravitationally (at least
to a first approximation). Observations of gravitational lensing effects also provide
an insight into dark matter (see [54] for a review) – these kinds of measurements
provide a clear insight into the location of mass within observed objects, and one
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particularly famous example is that of the Bullet Cluster. This name refers to two
colliding clusters of galaxies (of which the smaller is the actual Bullet Cluster) where
gravitational lensing techniques clearly show two widely separated mass distributions,
while X-ray emissions coming from the hot interacting gas are centred in the middle.

There are a wide variety of ideas that have been put forward for explaining dark
matter over the years, from Massive Compact Halo Objects (MACHOs) and Weakly
Interacting Massive Particles (WIMPs), to more out of the box ideas like modified
gravity theories. We will not go into detail here on the full landscape of options,
but simply say that, for the last few decades, WIMPs (or WIMP-like) have been
the favoured explanation. This is part due to the so-called “WIMP miracle”, which
comes from the seemingly strange coincidence that a weakly interacting (in the sense
of the electroweak force) particle, with a mass around the electroweak scale, naturally
gives the correct relic abundance to be DM. Our work in Chapter 4 fits roughly into
this paradigm.

We have not attempted here to provide a fully comprehensive view of dark matter,
nor fully cover the spectrum of evidence and possible explanations. For a much more
complete overview of the history of dark matter and more details on the variety of
astrophysical evidence for it, see the recent review by Bertone and Hooper [55].

1.3.2 Matter-Antimatter Asymmetry

The existence of a measured matter-antimatter asymmetry in our universe cuts
right to the heart of the question of our existence. At the time of the discovery
of antimatter, it was assumed to be an exact mirror image of matter, and so it
was reasonable to believe that antimatter would behave in exactly the same way
as matter and should have been created equally at the beginning of the universe.
However, this leads to a question about the observed asymmetry – if matter and
antimatter were created equally at the beginning of the universe, why does the world
we see around us seem to be made almost entirely of matter?

The baryon asymmetry is a measure of this asymmetry – it measures the difference
between the number of baryons and antibaryons, normalised to the number of
photons:

ηB = nB − nB̄

nγ

.

It can be determined through studies of Big Bang Nucleosynthesis (BBN) [56,57] or
the CMB [53] – both give a measured asymmetry of around ηB ∼ 6× 10−10.

How can such an asymmetry have come about? We have two options:
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1. Have a non-zero asymmetry as an initial condition of the universe, i.e. ηB(t =
0) ̸= 0

2. Generate an asymmetry dynamically during the evolution of the universe, i.e.
ηB(t = 0) = 0 =⇒ ηB(t > 0) ̸= 0

At first sight, the first options seems rather unnatural, but without a full under-
standing of the physics of the Big Bang it is hard to rule it out. However, this option
has bigger problems. All the evidence currently points towards a inflationary phase
at very early times, where the size of the universe increased by a factor of around
e60 ≈ 1026 [58]. This means that any initial asymmetry will be “washed out” to a
much smaller value.

So we must find a way for the asymmetry to be generated dynamically (known as
baryogenesis) – the three conditions that must be fulfilled are known as the Sakharov
conditions [59]:

1. C and CP violation

2. Baryon number violation

3. An out of thermal equilibrium phase

Given our current knowledge, is it possible these conditions were fulfilled in our
universe?

1. Currently we know that these are not good symmetries of the SM. As we
explained earlier in Section 1.2.2, we have observed P and CP violation, and
hence C must also be violated as well.

2. It has been shown that a baryon number violating process exists as a non-
perturbative solution to the SM electroweak field equations [60] (this solution
is generally known as a sphaleron).

3. In first order phase transitions, parameters can change discontinuously, and
this allows an out of thermal equilibrium situation to arise – the breaking of the
electroweak symmetry via the BEH mechanism constitutes a phase transition,
so it seems possible such a situation can occur.

It seems we can fulfil all of the three conditions – however, it is not as good as it
looks at first glance. If we assume that electroweak symmetry breaking is when
baryogenesis occurs, we have a problem. As discussed in Section 1.2.2, the Jarlskog
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invariant characterises the amount of CP violation in the SM. Normalising it to the
electroweak scale, we find that

det
(
−i
[
(Mu)2, (Md)2

])
v12 ∼ 7× 105 GeV12

(246 GeV)12 ∼ 10−23 ≪ ηB (1.3.1)

and so there is not enough CP violation in SM to account for the measured asymmetry.
On top of this, given the mass of the Higgs boson it is believed (e.g. [61]) that the
phase transition associated with the breaking of electroweak symmetry is second
rather than first order (meaning phase parameters change continuously) and so there
would have been no out of equilibrium phase.

As you might suspect from the positioning of this section, we are left with the
conclusion that there must be BSM physics in order to explain the observed matter-
antimatter asymmetry.

1.3.3 Neutrino Masses

While the issue of neutrino masses will bear no further relevance for the work in
this thesis, it is worth remarking briefly upon them as they may be considered the
clearest sign of BSM physics that we have yet discovered.

Neutrinos were first posited as a solution to the different energies of electrons emitted
in β decays – a two body decay of a neutron to a proton and an electron has fixed
kinematics, and so the energy and momentum of the electron should always be the
same. Observationally, electrons with a range of energies were detected, and Pauli
proposed that it was in fact a three body decay – proton to neutron, electron and
neutrino – such that the electron and neutrino could share the released energy in a
variety of ways.

It was for a long time presumed that the neutrino was massless, until the discovery of
neutrino oscillations through various experiments [62–65]. Neutrino oscillations can
only occur if the three flavours of neutrino have different masses, as the oscillation
probability is proportional to the mass differences. In order to give mass to neutrinos
in the same way as the other fermions (through interactions with the Higgs field), a
right-handed neutrino is needed. However, such a particle would be a singlet under
all the SM gauge groups, and hence would have no interactions except through the
Higgs mechanism – for this reason, the SM does not contain such a field, as it was
unnecessary for massless neutrinos. There is an alternative way to give the neutrino
mass – as the only massive neutral fundamental particle, it is possible that it is its
own antiparticle. In QFT terms, the neutrino field is Majorana rather than Dirac.
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Either solution involves extending the SM (albeit possibly in a very minimal way)
and so the observed masses are the first sign of BSM physics.

1.3.4 Flavour Anomalies

While all direct searches for new physics (NP) at the LHC have so far drawn a
blank, there is intriguing evidence of a serious anomaly emerging in rare B meson
decays. The story started back in 2013 when the LHCb collaboration reported a
discrepancy, with a local significance of 3.7σ, in an analysis of angular observables
in B0 → K∗µ+µ− decays [66], making use of less form factor dependent observables
defined in [67] (including the famous P ′

5). A complete theory analysis of these
decays was done in [68]. That result was based on 1 fb−1 of data, and has since
been replicated with more data by the LHCb [69, 70], as well as by CMS [71, 72],
ATLAS [73], BaBar [74], Belle [75,76] collaborations in various similar decay modes.

Since that initial result, there have been more measurements across a variety of
channels and observables – the common thread is the underlying decay b → sℓℓ.
The significance of the effect is still under discussion because of the difficulty of
determining the exact size of the hadronic contributions (see e.g. [77–83]). Estimates
of the combined significance of all these deviations range between three and almost
six standard deviations.

The picture developed still further with the measurement of the ratios

RK (∗) = B(B → K (∗)µ+µ−)
B(B → K (∗)e+e−)

, (1.3.2)

which test lepton flavour universality (LFU), by LHCb [84, 85].1 Such ratios were
first suggested as ideal testing grounds for NP in [87], and recent SM predictions can
be found in [88]. The results are highly suggestive of some non-universal physics at
play, i.e. that the universality of lepton couplings that exists in the SM is violated
by BSM physics.

There have been many global fits to all the relevant data [89–100], and what has
emerged is probably the most coherent sign yet from LHC results – a single NP
effect, contributing to the operator (sγµPLb)(µ̄γµµ), can reduce the tension in all
the anomalies.

Since then there has been a flood of interest from theorists attempting to explain
the results – see for example [101–130] for an arbitrary set of papers investigating
Z ′ models alone. In Chapter 5 we examine how a lepton flavour universal effect

1These ratios were also measured much earlier by Belle [86], but with a larger uncertainty.
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could be generated at 1-loop by effective operators, while in Chapter 7 we take the
measurements of LFU violation seriously and study how models that explain it are
strongly constrained by Bs mixing measurements.

1.4 Remainder of the thesis

The remainder of this thesis will concern the study of quark flavour physics, starting
with Chapter 2 where we study methods that will form the basis of some of the
calculations in the following chapters. Having worked on our theoretical foundations,
we try and answer some of the questions raised in Section 1.3, namely is there
anything beyond the Standard Model, and if so where might we see it and what is
it like? In order to tackle this we take a three pronged approach: we assess some
of the underlying assumptions of our calculational tools; we look for new physics in
both model independent and model dependent ways; and attempt to improve the
precision of vital input parameters to our calculations.

Starting in Chapter 3, we examine quark-hadron duality and how well it can be
tested using the current precision of B mixing observables, and how a small violation
of the duality could improve the status of D mixing calculations. Following this, in
Chapter 4 we study a specific model of dark matter that can produce interesting
effects in the up type quark sector and attempt to see what parameter space can
be ruled out by a mix of different constraints. Still looking at new physics, we take
an effective theory approach in Chapter 5 and look at a full set of new four quark
operators of the form (sb)(cc) and how a small set of precision observables can
rule out or confirm new effects in this sector. We then move on to improving the
precision of our calculations – so-called “bag” parameters are an important input
parameter in many of our calculations, and in Chapter 6 we provide an independent
and state-of-the-art calculation of these parameters as a cross-check on other, older,
calculations. Our final study, in Chapter 7, is of how a whole class of new physics
model that aim to explain the anomalies we introduced in Section 1.3.4 can be very
strongly constrained by Bs mixing observables given recent improvements to the
calculation. Finally we wrap up by discussing our conclusions from this body of
work in Chapter 8.





Chapter 2

Theoretical Tools

In this chapter we explore some of the concepts, tools and methods which will be
used in the rest of the thesis. The idea of effective field theories (EFTs) is one
of the most powerful in physics, and we will explain them in Section 2.1, along
with a specific example of an EFT in Section 2.3. Another omnipresent tool is the
Heavy Quark Expansion, which we see in Section 2.2. Finally, we will explore two
simple examples of operator matching and renormalisation – the construction of the
Weak Effective Theory (WET) and the calculation of a Bs mixing observable – in
Section 2.4.

2.1 Effective Field Theories

The basic idea of an effective field theory is simple – that a problem can be successfully
analysed only making reference to the physics that is most relevant. To talk about a
basic mechanics problem of e.g. balls colliding, we don’t need to know the details of
the individual atoms in the ball, only that the total effect is to make the balls bounce
off each other elastically. We have chosen a description with only the relevant degrees
of freedom – in our example, Newtonian mechanics can do the job most effectively.
An EFT is simply a formalised version of this principle, applied to field theories
as our computational tool. If we have a theory with some high energy degrees of
freedom, but want to calculate at low energies (or equivalently larger scales), we can
produce a new theory with the irrelevant parts removed, and do it in a consistent
way such that we understand how to include corrections in a systematic fashion.

There are two approaches to constructing an EFT – generally called top down and
bottom up. In the bottom up approach, you take a model that is known to work
well at some energy scale and build up all the new higher dimensional operators
from the fields you know while respecting your low energy symmetries – an example
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of such an EFT is the SMEFT (Standard Model Effective Field Theory) [131,132].
Alternatively, you can take the top down approach. Start with a theory you know
(or believe) to be valid at a high scale, and integrate out the irrelevant degrees of
freedom such that you end up with a simpler theory that is more useful for certain
classes of problems. Two examples are shown in the remainder of this chapter –
Heavy Quark Effective Theory, which we describe in Section 2.3, and the Weak
Effective Theory, the basic derivation of which we show in Section 2.4.1.

The principle of the EFT formalism (separating out the scales of a problem) provides
another benefit for our computations. One central aspect of QCD is the running
behaviour of the coupling constant – αs becomes larger at lower energies, diverging at
the scale ΛQCD. As such, QCD corrections become increasingly large. An EFT allows
us to separate out the matrix elements (which are determined by long distance, low
energy behaviour) from the effective coupling constants (which come from high energy
interactions). As we will see, the low energy matrix elements can be determined
through lattice QCD calculations, while we determine the effective coupling constants
using perturbation theory. This separation can be seen in the Lagrangian, which
takes the form

L ∼ C(µ)O(µ) ,

where µ is the scale of our calculation (which we will see more of later in this chapter).
Both the effective coupling constant C and the operator O are individually scale
dependent, but their product (which is directly related to a physical observable) is
not – the scale variation cancels between them.

2.2 Heavy Quark Expansion

The Heavy Quark Expansion (HQE) is a tool for studying inclusive decays of heavy
hadrons, particularly the decay of B mesons. In an inclusive decay we calculate a
quark level process, but don’t worry about the details of how the final state quarks
can hadronise into many different hadrons. The corresponding experimental result is
found by measuring and summing over all the possible hadronic end products. (The
opposite would be exclusive decays, where a single hadronic decay mode is studied
and the theoretical calculation is challenging.)

The HQE is an operator product expansion (OPE), in inverse powers of mb.1 (See
[133–140] for the pioneering papers and [141] for a recent review.) The reason for

1In the case of the total lifetime and Γ12, you also find that an overall factor of
√

1−M2
f /m2

b ,
where Mf is the total mass of the final state quarks, appears in the calculations.
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such an expansion can be seen schematically in the following way. The decay width
of a B meson can be written in the form

Γ(B → X) = 1
2MB

∑
X

∫
p.s.

(2π)4δ4(pB − pX)|iM(B → X)|2 (2.2.1)

where
∫

p.s. stands for an integration over the phase space of the final state particles.
Making use of the optical theorem,1 we can rewrite this as

Γ(B) = 1
MB

Im(M(B → B)) . (2.2.2)

An alternative formulation is more common, using the Taylor expansion of the
S-matrix in terms of time-ordered products of the Hamiltonian:

Γ(B) = 1
MB

Im ⟨B|T |B⟩ where T = i
∫
d4xT (H(x)H(0)) . (2.2.3)

The OPE tells us that since mb is large in this context, the integral is dominated by
small distances x ∼ m−1

b , and we can expand T as a series of local operators.

If we consider operators that can mediate the B → B process, we can see what the
power series looks like.

• The smallest dimension operator we can write down is bb, with mass dimension
three.

• At first glance, it would seem we could write down b /Db as a dimension-four
operator (where /D is the QCD+QED covariant derivative), but this can be
reduced to bb using the corresponding equations of motion, and so is not
independent.

• The next independent operator has dimension five: bσµνG
µνb.

• At dimension six, there is (bΓq)(bΓ′q) – notice this is the first time we have a
coupling to the second quark that makes up the meson, whereas for the lower
dimensional operators this other quark is a spectator to the decay.

We can expand the width in terms of these operators and their (dimensionless)

1In the language of amplitudes, the optical theorem can be written in the form

iM(i→ f) + [iM(f → i)]∗ = −(2π)4∑
X

∫
p.s.

[iM(f → X)]∗ iM(i→ X) .
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Particle Lifetime / ps Lifetime ratio (τ(X)/τ(Bd))
Bd(= bd) 1.520± 0.004 1
Bs(= bs) 1.509± 0.004 0.993± 0.004
B+(= bu) 1.638± 0.004 1.076± 0.004
B+

c (= bc) 0.507± 0.009 0.334± 0.006 †
Λb(= bdu) 1.470± 0.010 0.967± 0.007
Ξ 0

b(= bsu) 1.479± 0.031 0.97± 0.02 †
Ξ −

b (= bsd) 1.571± 0.040 1.03± 0.26 †
Ω−

b (= bss) 1.64+0.18
−0.17 1.08+0.12

−0.11 †

Table 2.1: Lifetime data for B mesons and baryons, taken from the
HFLAV [142,143] 2018 results [144]. Those marked with
a † are not directly given by HFLAV, and are my own
calculation.

coefficients as

Γ(B) ∼ Cbb
⟨B|bb|B⟩
MB

+
CbGb

m2
b

⟨B|bσµνG
µνb|B⟩

MB

+
Cbqbq

m3
b

⟨B|(bΓq)(bΓ′q)|B⟩
MB

+ . . . ,

(2.2.4)
which is the Heavy Quark Expansion. It is interesting to note two properties we
expect from the HQE – the corrections to free b quark decay arise at O

(
1/m2

b

)
, and

the spectator quark only gets involved at O
(
1/m3

b

)
(although some of the O

(
1/m3

b

)
terms get a numerical enhancement of the order 16π2 as they arise from 1-loop rather
than 2-loop diagrams). This is realised in the experimental data, where we can see
from Table 2.1 that many B mesons and baryons have a lifetime of approximately
1.5 ps, and e.g. the lifetime ratio τ(Bs)/τ(Bd) deviates from 1 at the sub-percent
level.

We have focused on the HQE for B mesons here, but it is worth a small discussion
about the charm sector. Since mc ≈ mb/3, it is not clear that the HQE will
converge as well for D mesons as it does for B. The simplest way to test this is to
make predictions for D lifetimes and see how they compare to data. However, this
approach has been hindered by the lack of availability of non-perturbative matrix
element determinations, leaving us reliant on the Vacuum Saturation Approximation
(VSA). Our work in Chapter 6 provides some of the first results in this area, and is
encouraging in terms of the reliability of the HQE for these calculations.

2.3 Heavy Quark Effective Theory

As we discussed in Section 2.1 the basic idea of an EFT is that given a scale that is
widely separated from all others in a problem, we can remove the isolated scale to



2.3. Heavy Quark Effective Theory 37

construct a simpler theoretical description. For the Heavy Quark Effective Theory,
the heavy quark mass is the isolated scale. (See [140,145–154] for some of the early
development of the HQET, or [155,156] for in depth reviews.) What do we mean by
a “heavy” quark? In many processes with a single bottom or charm quark, the other
relevant scales are that of the QCD scale and/or the lighter (i.e. s, d, u) quark masses
and momenta, which are both on the order of 100 MeV. Since ΛQCD/mb,c ≪ 1, we
have the basis for our EFT.

The formulation of HQET can be thought of in the following way: we work in a
frame where the heavy quark is almost at rest,

p = mQv + p̃, (with v · v = 1) (2.3.1)

where the residual momentum is small (p̃ ∼ ΛQCD). Although choosing such a frame
breaks Lorentz invariance, it is possible to write the theory in a Lorentz covariant
fashion. In this frame, the heavy quark acts as a static source of the QCD potential.
A more physical understanding can be seen by analogy to the case of the electron
cloud surrounding a proton in a hydrogen atom. At first approximation, we model the
proton at rest and talk about the electrons moving around in a fixed electromagnetic
(QED) potential – this gives rise to the measurable spectra of hydrogen atoms.
Corrections to this picture arise at O

(
1/mQ

)
, in the same way that the spectrum of

different isotopes of hydrogen differ only in their hyperfine structure. A final point
to note about HQET is that the heavy quark and antiquark fields are separate – we
see that in the frame where the heavy quark is at rest, there is not enough energy
to create an antiquark where none existed before.

Feynman Rules

The Feynman rules for HQET can be found in Table B.1 of Appendix B, but we
briefly outline here how their form can be derived. Since HQET is based on the
large quark mass, we can get an idea of the behaviour by considering mQ → ∞.
By taking this limit of the QCD Feynman rules, we can see, for example, that the
HQET heavy quark propagator will look like:

i(/p+m)
p2 −m2 = im(/v + 1) + i/̃p

m2v · v + 2mv · p̃+ p̃2 −m2

= im(/v + 1) + i/̃p

2mv · p̃+ p̃2

= i(/v + 1)
2v · p̃ +O

(
p̃

m

)
.
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LL NLL NNLL N3LL

Tree-level 1 − − −
1-loop αs ln αs − −
2-loop α2

s ln2 α2
s ln α2

s −
3-loop α3

s ln3 α3
s ln2 α3

s ln α3
s

Table 2.2: Coefficients in a perturbative expansion.

2.4 Example calculations

As a round off to this section, we aim to show in detail two particular calculations,
including some points that are often less well elaborated on. To start, we will show
the calculation of the Wilson coefficients for the first two operators of the WET and
how the renormalisation and renormalisation group running works. As a follow up,
we detail the calculation of the mass difference arising from Bs mixing, hopefully
illuminating the origin of many of the more obscure factors.

2.4.1 Matching and RG running

Matching is the procedure by which we relate two field theories with different regions
of applicability (generally a more fundamental theory to its low energy effective
version) to each other – we calculate some process in both the EFTs, and set the
Wilson coefficients by requiring that we get the same answer in both (in general
many processes may be necessary to specify all the unknown coefficients). Once
we go beyond tree level, a scale dependence will appear in our calculation – this is
the “matching scale” and there is a certain amount of freedom in our choice of this
scale as it is unphysical (by which we mean that any observable quantity cannot
depend on it). As we have said, often the idea of EFTs is to allow us to calculate at
an energy scale that is very far removed from some fundamental scale in our “full”
theory. Once we have our Wilson coefficients as a function of our matching scale, µm,
can we just set this scale to whatever low scale we want to work at? Mathematically,
yes perhaps, but if we do that we see that large logarithms arise in our results –
generally of the form ln(scale of removed physics/scale of calculation), which break
the validity of our perturbation series. Naively this might be solved by going to
higher orders in the calculation, as this is “well-known” as the technique to reduce
scale variation (which amounts to calculating more rows in Table 2.2). A better
solution is to use renormalisation group (RG) improved perturbation theory to sum
up these large logs to all orders – this corresponds to calculating column by column
in Table 2.2.
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Figure 2.1: QCD correction diagrams in the SM (symmetric dia-
grams not shown).

The process we study in this example is biuj → ckd l, which can arise from two
∆F = 1 operators in the WET:

Q1 = (c̄iγµPLb
j)(d̄jγµPLu

i), Q2 = (c̄iγµPLb
i)(d̄jγµPLu

j) (2.4.1)

(there is an alternative way of defining the two operators in terms of colour singlets
and octets, which can be related to our definition using the Fierz relation Equa-
tion A.0.1). The numbering of these two operators is convention dependent – our
choice matches that of [157]. At tree level only one operator would be needed (Q2),
but QCD corrections generate the other colour structure.

In this example we match onto the WET at LO+LL accuracy – this means calculating
the matching at 1-loop as this is where the leading order QCD corrections come
in. We keep terms that are O (αs ln) since these will turn out to be large, while
discarding terms that are simply O (αs) – looking at Table 2.2 we see that these
terms count at NLL accuracy. We can choose our external quarks to all have equal,
off-shell momentum p (with p2 < 0), despite this obviously being unphysical, as
well as further approximating our external states as massless. The previous two
choices have no effect on the resulting Wilson coefficients (as only the infrared (IR)
behaviour is affected, and our Wilson coefficients come from the different ultraviolet
(UV) behaviour of the two theories) but greatly simplify the calculation.

SM calculation

In addition to the tree-level diagram the QCD corrections give us another six dia-
grams, some of which are shown in Figure 2.1. The amplitude for the tree diagram
is simple:

iMSM,(0) = −i4GF√
2
VcbV

∗
ud(ūcγ

µPLub)(ūdγµPLuu)δkiδlj ≡ −i
4GF√

2
VcbV

∗
ud ⟨Q2⟩tree ,
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where we have defined the tree-level insertion in what will be a sensible way when
we come to the WET calculation, and the Fermi constant GF is given by

GF√
2
≡ g2

8M2
W

. (2.4.2)

The 1-loop diagrams are where the interesting results come in – we will see that
different colour structures are generated by the exchange of gluons between the two
sets of fermion lines. (In the following, the subscripts on iM refer to the left, middle
and right diagrams in Figure 2.1 respectively.)

iMSM,(1)
1 =

∫ ddk

(2π)d

[(
ūc · igst

a
kmγ

α ·
i(/p− /k)
(p− k)2 ·

ig√
2
γµPL ·

i(/p− /k)
(p− k)2 · igst

a
miγ

β · ub

)
(
ūd ·

ig√
2
δjlγ

νPL · uu

)
× −igµν

−M2
W

× −igαβ

k2 × VcbV
∗

ud

]

= −i4GF√
2
VcbV

∗
udδkiδlj

αs

4πCF

[
(ūcγ

µPLub)(ūdγµPLuu)
(

1
ϵ

+ ln
(
µ2

−p2

)
+ 1

)

− 2
p2 (ūc/pPLub)(ūd/pPLuu)

]

and now dropping terms that don’t contribute at leading log accuracy we find

= −i4GF√
2
VcbV

∗
ud(ūcγ

µPLub)(ūdγµPLuu)δkiδlj

[
αs

4πCF

(
1
ϵ

+ ln
(
µ2

−p2

))]

= −i4GF√
2
VcbV

∗
ud

[
αs

4πCF

(
1
ϵ

+ ln
(
µ2

−p2

))]
⟨Q2⟩tree .

iMSM,(1)
2 =

∫ ddk

(2π)d

[(
ūc ·

ig√
2
γµPL ·

i(/p− /k)
(p− k)2 · igst

a
kiγ

α · ub

)
(
ūd ·

ig√
2
γνPL ·

i(/p+ /k)
(p+ k)2 · igst

a
ljγ

β · uu

)

× −igµν

k2 −M2
W

× −igαβ

k2 × VcbV
∗

ud

]

= −i8GF√
2
VcbV

∗
ud(ūcγ

µPLub)(ūdγµPLuu)
(

1
Nc

δkiδlj − δkjδli

)[
αs

4π ln
(
M2

W

−p2

)]

= −i8GF√
2
VcbV

∗
ud

[
αs

4π ln
(
M2

W

−p2

)](
1
Nc

⟨Q2⟩tree − ⟨Q1⟩tree
)
.
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iMSM,(1)
3 =

∫ ddk

(2π)d

[(
ūc ·

ig√
2
γµPL ·

i(/p+ /k)
(p+ k)2 · igst

a
kiγ

α · ub

)
(
ūd · igst

a
ljγ

β ·
i(/p+ /k)
(p+ k)2 ·

ig√
2
γνPL · uu

)

× −igµν

k2 −M2
W

× −igαβ

k2 × VcbV
∗

ud

]

= i
2GF√

2
VcbV

∗
ud(ūcγ

µPLub)(ūdγµPLuu)
(

1
Nc

δkiδlj − δkjδli

)[
αs

4π ln
(
M2

W

−p2

)]

= −i2GF√
2
VcbV

∗
ud

[
αs

4π ln
(
M2

W

−p2

)](
⟨Q1⟩tree − 1

Nc

⟨Q2⟩tree
)
.

The symmetric diagrams give the same results as their corresponding diagrams, and
so we find

iMSM = iMSM,(0) + 2(iMSM,(1)
1 + iMSM,(1)

2 + iMSM,(1)
3 )

= −i4GF√
2
VcbV

∗
ud

[(
1 + αs

4π

[
2CF

{
1
ϵ

+ ln
(
µ2

−p2

)}
+ 3
Nc

ln
(
M2

W

−p2

)])
⟨Q2⟩tree

+
(
αs

4π

[
−3 ln

(
M2

W

−p2

)])
⟨Q1⟩tree

]

WET calculation

We define our effective Hamiltonian as

Heff = 4GF√
2
VcbV

∗
ud(C1Q1 + C2Q2) + h.c. (2.4.3)

where we have already included some prefactors for convenience.

The diagrams which contribute in the effective theory are just those of the SM
(see Figure 2.1) with the W propagator contracted to a point. At tree level, the
amplitude is just

iMWET,(0) = −i4GF√
2
VcbV

∗
ud(ūcγ

µPLub)(ūdγµPLuu)(C1δkiδlj + C2δkjδli)

≡ −i4GF√
2
VcbV

∗
ud(C1 ⟨Q1⟩tree + C2 ⟨Q2⟩tree)

which justifies our earlier definition of the tree-level insertion.
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The 1-loop QCD corrections are:

iMWET,(1)
1 =

∫ ddk

(2π)d

[(
ūc · igst

a
kmγ

α ·
i(/p− /k)
(p− k)2 · γ

µPL ·
i(/p− /k)
(p− k)2 · igst

a
niγ

β · ub

)
× (ūd · γµPL · uu)

× −igαβ

k2 ×−i4GF√
2
VcbV

∗
ud(C1δmjδln + C2δmnδlj)

]

= −i4GF√
2
VcbV

∗
ud

[
αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))]
×[(

C1

2 + CFC2

)
⟨Q2⟩tree − C1

2Nc

⟨Q1⟩tree
]
.

iMWET,(1)
2 =

∫ ddk

(2π)d

[ (
ūc · γµPL ·

i(/p− /k)
(p− k)2 · igst

a
miγ

α · ub

)

×
(
ūd · γµPL ·

i(/p+ /k)
(p+ k)2 · igst

a
njγ

β · uu

)

× −igαβ

k2 ×−i4GF√
2
VcbV

∗
ud(C1δkmδln + C2δknδlm)

]

= −i8GF√
2
VcbV

∗
ud

[
αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))]
×[(

C1

Nc

− C2

)
⟨Q1⟩tree +

(
C2

Nc

− C1

)
⟨Q2⟩tree

]
.

iMWET,(1)
3 =

∫ ddk

(2π)d

[(
ūc · γµPL ·

i(/p− /k)
(p− k)2 · igst

a
miγ

β · ub

)

×
(
ūd · igst

a
lnγ

α ·
i(/p− /k)
(p− k)2γ

µPL · ·uu

)

× −igαβ

k2 ×−i4GF√
2
VcbV

∗
ud(C1δkjδnm + C2δkmδnj)

]

= −i4GF√
2
VcbV

∗
ud

[
αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))]
×[(

C2

2 + CFC1

)
⟨Q1⟩tree − C2

2Nc

⟨Q2⟩tree
]
.

As in the SM, the symmetric diagrams give the same result, and hence the total
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result for our EFT calculation is

iMWET = iMWET,(0) + 2(iMWET,(1)
1 + iMWET,(1)

2 + iMWET,(1)
3 )

= −i4GF√
2
VcbV

∗
ud

 ⟨Q1⟩tree
(

C1

{
1 + αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))(
2CF + 3

Nc

)}

− 3C2

{
αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))})

+ ⟨Q2⟩tree
(

+ C2

{
1 + αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))(
2CF + 3

Nc

)}

− 3C1

{
αs

4π

(
1
ϵ

+ ln
(
µ2

−p2

))}) .
Comparing iMSM with iMWET, we see that the effective amplitude has extra di-
vergences compared to the full theory. This is related to the fact that our effective
theory is non-renormalisable – both have the same IR behaviour but the UV be-
haviour is worse in the WET. By setting iMSM = iMWET, we can find the Wilson
coefficients needed such that the two theories give the same result as the calculated
order: 1

C1 = −3αs

4π

(
1
ϵ

+ ln
(
µ2

M2
W

))
,

C2 = 1− 3
Nc

αs

4π

(
1
ϵ

+ ln
(
µ2

M2
W

))
.

We see that the result still has divergences – as expected they did not all cancel in
the matching, only those common to both theories. The Wilson coefficients can be
renormalised by a two by two matrix, which in our case will be non-diagonal since
the QCD corrections generate one operator from the other.

Cbare
i = Zij(µ)Cren

j (µ) (2.4.4)

The renormalisation constants Zij can be expanded perturbatively in αs, and it is
easy to read off that the matrix

Z = 1 + αs

4π
1
ϵ

0 3
0 − 3

Nc


renders our Wilson coefficients finite, with the following form:

C1(µ) = −3αs

4π ln
(
µ2

M2
W

)
,

1Note that the explicit µ dependence in this result cancels with that of αs (from Equation 2.4.8)
to give a µ independent result for C1 and C2, as expected since these are bare coefficients.
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C2(µ) = 1− 3
Nc

αs

4π ln
(
µ2

M2
W

)
.

There is a slight problem, however – the Zi1 elements of our renormalisation matrix
drop out of the calculation at this order since C1 only appears at O (αs). Hence we
have an ambiguity in the result – any constant times αs could be added here without
affecting the renormalisation property. This ambiguity can be resolved by a different
choice of operator basis, e.g. if we use Q± (as defined later in this section). Doing so,
we can then transform back into the Q1,2 basis and find the renormalisation matrix
for the Wilson coefficients C1,2 is

Z = 1 + αs

4π
1
ϵ

− 3
Nc

3
3 − 3

Nc

 . (2.4.5)

It is also worth noting that we can instead consider renormalising the operators
Q1,2 themselves to remove the new UV divergence, and this process gives us a non-
ambiguous renormalisation matrix, which is related to the one we have found as
follows: let

Cbare
i = ZijC

ren
j and Qbare

i = ZQ
ijQ

ren
j

such that
(Cbare

i )TQbare
i = (Cren

j )TZjiZ
Q
ikQ

ren
k = (Cren

i )TQren
i

where the second equality holds since we can equally well formulate our theory in
terms of renormalised or bare constituents. As such, we must have

ZjiZ
Q
ik = δjk ⇒ ZQ

ij = Z−1
ji . (2.4.6)

Renormalisation Group Evolution

In principle we can now use our EFT to make calculations at low (µ ∼ mb ) scales,
as we have a perturbative expression for our coupling constants as a function of the
scale. But looking at the numbers, it is not quite so simple – if we set our scale to
the b quark mass, what do we find? Our expansion parameter, rather than being
αs(mb) ∼ 0.2, is instead αs lnm2

b/M
2
W ∼ 1 – the entire basis of perturbation theory,

that successive corrections get smaller, seems to have broken down. Including all
the factors we find our Wilson coefficients are then C1 ∼ −0.3, C2 ∼ 1.1 – not quite
as worrying, but still a relatively large change from tree level.

How do we resolve this crisis? Going to higher orders will not help – looking at
Table 2.2 we see at n-loops we have terms that look like (αs ln)n which still break
the convergence of the perturbative series. We have to sum up these terms to all
orders – i.e. calculate column by column rather than row by row in Table 2.2. The
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tool to do this is renormalisation group improved perturbation theory, which we will
now demonstrate.

If we recall our renormalised Wilson coefficients are defined as C⃗bare = Z · C⃗ren, and
that the bare coefficients should be independent of the scale µ, we can write

dC⃗bare

dµ
= 0 = dZ

dµ
· C⃗ren + Z · dC⃗

ren

dµ
.

Rearranging this equation, we get

µ
dC⃗ren

dµ
= −Z−1 · µdZ

dµ
· C⃗ren

dC⃗ren

d lnµ ≡ γT · C⃗ren (2.4.7)

which defines the anomalous dimension matrix γ (the transpose in the definition is
conventional).

The simplest way to solve this differential equation is to move to a basis of Wilson
coefficients (or equivalently operators) where the renormalisation matrix is diagonal.
Defining new operators Q± = 1

2(Q2 ±Q1), we find the following result

Cbare
± = Z±C

ren
± with Z± = 1± 3

Nc

αs

4π
1
ϵ
(Nc ∓ 1)

for which our now diagonal anomalous dimension matrix is

γ± = − 1
Z±

dZ±

d lnµ .

The running of αs is given by the QCD beta function, defined in the following way:

dαs

d lnµ ≡ β(αs) = −2αs

(
ϵ+ αs

4πβ0 +
(
αs

4π

)2
β1 + . . .

)
, (2.4.8)

where we have included the O (ϵ) term as well. The βi coefficients are determined by
an i-loop calculation – in our notation, β0 = 11− 2nf/3. Using this, we can expand
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our anomalous dimension matrix as

γ± = − 1
Z±

dZ±

dαs

dαs

d lnµ

= −
(

1± 3
Nc

αs

4π
1
ϵ
(Nc ∓ 1)

)−1

× d

dαs

(1± 3
Nc

αs

4π
1
ϵ
(Nc ∓ 1))× β(αs)

= −
(

1∓ 3
Nc

αs

4π
1
ϵ
(Nc ∓ 1)

)(
± 3
Nc

1
4π

1
ϵ
(Nc ∓ 1)

)(
−2αs

(
ϵ+ αs

4πβ0

))
+O

(
α2

s

)
= −αs

4π
6
Nc

(1∓Nc)

≡ αs

4πγ
(0)
± .

We can now solve the RG equation for the evolution of our Wilson coefficients, in
the following way:

dC±

d lnµ = γ±C±

1
C±

dC±

dαs

= γ±

β(αs)
C±(µ)∫

C±(µ0)

dC±

C±
=

αs(µ)∫
αs(µ0)

αs

4π
γ

(0)
±

−2αs(αs

4π
β0)

dαs

ln
(
C±(µ)
C±(µ0)

)
= −γ

(0)
±

2β0

αs(µ)∫
αs(µ0)

dαs

αs

ln
(
C±(µ)
C±(µ0)

)
= −γ

(0)
±

2β0
ln
(
αs(µ)
αs(µ0)

)

⇒ C±(µ) = C±(µ0)
[
αs(µ)
αs(µ0)

]−
γ

(0)
±

2β0

where µ0 is some scale close to the matching scale of our EFT. From the start of our
calculation, and our definition C± = C2 ± C1, we have

C±(µ) = 1− 3
Nc

(1±Nc)
αs

4π ln
(
µ2

M2
W

)

and so our full result is

C±(µ) =
(

1− 3
Nc

(1±Nc)
αs

4π ln
(
µ2

0

M2
W

))[
αs(µ)
αs(µ0)

]−
γ

(0)
±

2β0
(2.4.9)

Before continuing, a brief interlude about the above result. The first term (in round
brackets) is a fixed order calculation at some high scale µ0, which displays the poor
convergence behaviour we discussed earlier. The second term (in square brackets) is
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the result of summing up all large logs, which arise when we take µ very different
from µ0.

Our final step is to revert back to the original basis of C1,2 coefficients. We have the
freedom to choose the matching scale µ0 (which acts as a boundary condition on
our RGE equations) to be anything of the order of MW , such that large logs don’t
appear. The simplest solution is to set µ0 = MW , as at this scale the logs vanish at
this order, and we are left with a simpler result. Plugging in all the numbers, we
find as our final result

C1(µ) = 1
2

[ αs(µ)
αs(MW )

]− 6
23

−
[
αs(µ)
αs(MW )

] 12
23
 , (2.4.10)

C2(µ) = 1
2

[ αs(µ)
αs(MW )

]− 6
23

+
[
αs(µ)
αs(MW )

] 12
23
 . (2.4.11)

2.4.2 Bs mixing

The formalism of meson mixing can be understood as a “simple”1 application of
time-dependent perturbation theory with two discrete eigenstates of the unperturbed
Hamiltonian, plus a continuum of lighter states. They are unstable particles, which
can transition into other quantum states through the decay process. Treating the
particles as quantum mechanical states, and applying the Wigner-Weisskopf method
(see Appendix I of [158] for the details of this), we can show that the time evolution
can be written as

∂

∂t

Bs

Bs

 =
M̂ − i

2Γ̂
Bs

Bs

 (2.4.12)

where M̂ and Γ̂ are both Hermitian matrices. Because of the weak interaction these
two matrices are not diagonal, and the eigenstates of the Hamiltonian can be found
by diagonalising M̂ and Γ̂. This gives

(∆M)2 − 1
4(∆Γ)2 = 4|M12|2 − |Γ12|2 , (2.4.13)

∆M ·∆Γ = −4 Re(M12Γ∗
12) , (2.4.14)

where M12 and Γ12 are the off-diagonal elements of M̂ and Γ̂, and ∆M and ∆Γ cor-
respond to the mass and width difference of the two mass eigenstates, conventionally
labelled BH ,BL (heavy and light) such that

∆M ≡MBH
−MBL

, ∆Γ ≡ ΓBL
− ΓBH

. (2.4.15)

1i.e. not at all
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It has been experimentally measured that the ratio ∆Γ/∆M is small, and it is also
true that in the SM we have |Γ12/M12| ≪ 1.1 Expanding in either of these small
parameters, we find

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosϕ12, with ϕ12 = arg(−M12/Γ12) , (2.4.16)

where we have neglected terms of O
(
|Γ12/M12|2

)
.

In order to predict ∆M , we see that we must calculate M12. The quantum mechanical
calculation2 tells us that the off diagonal element M12 is given by

M12 = ⟨Bs|H ′|Bs⟩ ,

where H ′ is the weak Hamiltonian (note that this is actually the Hamiltonian here,
not the density) that acts as the perturbation. Since in QFT states are normalised
such that ⟨i|i⟩ = 2EiV (where V is the volume of some hypothetical finite space),
compared to the unit normalisation ⟨Bs|Bs⟩ = 1 in QM, this expression becomes

M12 =
⟨Bs|H ′|Bs⟩

2MBsV

=
⟨Bs|

∫
d3xH(x)|Bs⟩
2MBsV

=
⟨Bs|H|Bs⟩

2MBs
, (2.4.17)

where we have used the translational invariance of the Hamiltonian density to cancel
off the volume factor.

In our above expression, what is the Hamiltonian we must use? Since we want
to calculate the overlap between two hadronic states, it seems reasonable that the
Hamiltonian must be one that is most appropriate for that scale, i.e. ∼ mb – so we
should use an effective Hamiltonian.

So a rough outline of the calculation is

1. Match the SM onto the WET (which we will do using the process bisj → bksl)

2. (RG run the Wilson coefficients down to ∼ mb)

3. Find a way to evaluate the matrix element of our low scale Hamiltonian.

The matching process proceeds similarly to that done in the previous section.
1Note that while this hierarchy is true for B and Bs mesons, they do not hold for D mixing.
2A full account of this calculation can be found in Chapter 1.2.1 of [159].
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b

s̄

s

b̄

b

s̄

s

b̄

Figure 2.2: Leading order diagrams for Bs mixing in the weak effec-
tive theory.

WET calculation

It can be shown that the appropriate basis of operators for ∆B = 2 processes is the
so-called “SUSY” basis [160], which contains eight operators (see Appendix C for a
list). For our purposes, we need only one however (as it is the only one that arises
in the SM):

O1 = (s iγµPLbi)(sjγµPLbj)

which means our effective Hamiltonian is

Heff = C1O1 + h.c.

(note that there is a factor of four and a hermitian conjugation relative to e.g.
FLAG [161,162].).

There are two diagrams that contribute in the WET (at leading order), shown in
Figure 2.2.

The amplitude in the effective theory is

iMWET = (−iC) · 2(v̄γµPLu)(ūγµPLv)δijδkl − (−iC) · 2(v̄γµPLv)(ūγµPLu)δilδkj

= −2iC
[
(v̄γµPLu)(ūγµPLv)δijδkl − (v̄γµPLv)(ūγµPLu)δilδkj

]
. (2.4.18)

The factor of two comes from being able to contract the external legs multiple ways
in the diagram (this would normally be cancelled out by a normalisation factor in
the Lagrangian, like e.g. the 4! factor in scalar ϕ4 theory), and the minus sign from
the different orientation of the fermion lines. Both these factors can be most easily
seen by doing the Wick contraction by hand.

SM calculation

In the SM there are many more diagrams, two of which are shown in Figure 2.3.
We have to sum over the possible internal quarks (u, c, t), and in Feynman gauge
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Figure 2.3: Box diagrams that contribute to Bs mixing in the SM.

you can also substitute either of the W bosons for a charged Goldstone boson. In
total, this gives us 2× 4× 3× 3 = 72 diagrams. However, what seems like a large
computation can be simplified by examining the structure of the amplitudes.

For each diagram, we get a result like iM∼ ∑q,q′ λqλq′F (xq, xq′) where λq ≡ VqbV
∗

qs,
xq ≡ m2

q/M
2
W and F is the function resulting from the loop integral, which we have

written as a function of the dimensionless quark mass ratios rather than the masses
alone. Using the unitarity of the CKM matrix, the above sum can be written in the
following form

iM = λ2
u [F (xu, xu)− 2F (xc, xu) + F (xc, xc)]

+ 2λuλt [F (xc, xc)− F (xc, xu)− F (xt, xc) + F (xt, xu)]
+ λ2

t [F (xt, xt)− 2F (xt, xu) + F (xu, xu)] .

(2.4.19)

There are two sources of suppression in this expression, GIM and CKM. GIM
suppression (see the end of Section 1.2.1) comes from the fact that if the quark
masses were equal, each set of terms in the square brackets would vanish, while
CKM suppression can be seen from examining size of the prefactors:

λ2
t ∼ 10−3, λtλu ∼ 10−5, λ2

u ∼ 10−7 . (2.4.20)

While obviously the approximation mt = mc = mu is not a good one, setting mc =
mu = 0 is much better, and so we will drop the first two terms in Equation 2.4.19,
leaving us with

iM = λ2
t [F (xt, xt)− 2F (xt, 0) + F (0, 0)] . (2.4.21)

(The terms we are dropping by doing this are of the order 10−4 which is much less
than both the current experimental and theoretical precision.)

To separate out the calculation, we label the left and right diagrams in Figure 2.3
by a and b respectively, and the diagrams with virtual W W ,Wϕ, ϕW , ϕϕ by 1-4
respectively. It is worth noting that in Feynman gauge, the loop integrals are finite,
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and so we set d = 4 from the start.

iMSM
1a = λ2

t

∫ d4k

(2π)4

[(
v̄ · ig√

2
γµPL ·

i(/k +mq)
k2 −m2

q

· ig√
2
γνPL · u

)
(
ū · ig√

2
γαPL ·

i(/k +mq′)
k2 −m2

q′
· ig√

2
γβPL · v

)

× −igµν

k2 −M2
W

× −igαβ

k2 −M2
W

× δijδkl

]

= δijδklλ
2
t

g4

16(v̄γµγαγνPLu)(ūγνγαγµPLv)×∫ d4k

(2π)4
k2

(k2 −m2
q)(k2 −m2

q′)(k2 −M2
W )2 .

For the diagrams with virtual Goldstone bosons, since the Goldstone coupling is
proportional to the quark mass, we need only calculate the result for the case where
both virtual quarks are tops, as the others give zero contribution in our approximation
mc = mu = 0.

iMSM
2a = iMSM

3a = λ2
t

∫ d4k

(2π)4

[(
v̄ · ig√

2
mt

MW

PR ·
i(/k +mt)
k2 −m2

t

· ig√
2
γµPL · u

)
(
ū · ig√

2
γνPL ·

i(/k +mt)
k2 −m2

t

· ig√
2
mt

MW

PL · v
)

× −igµν

k2 −M2
W

× i

k2 −M2
W

× δijδkl

]

= −δijδklλ
2
t

g4

4
m4

t

M2
W

(v̄γµPLu)(ūγµPLv)×
∫ d4k

(2π)4
1

(k2 −m2
t )2(k2 −M2

W )2 ,

iMSM
4a = λ2

t

∫ d4k

(2π)4

[(
v̄ · ig√

2
mt

MW

PR ·
i(/k +mt)
k2 −m2

t

· ig√
2
mt

MW

PL · u
)

(
ū · ig√

2
mt

MW

PR ·
i(/k +mt)
k2 −m2

t

· ig√
2
mt

MW

PL · v
)

× i

k2 −M2
W

× i

k2 −M2
W

× δijδkl

]

= δijδklλ
2
t

g4

16
m4

t

M4
W

(v̄γµPLu)(ūγµPLv)
∫ d4k

(2π)4
k2

(k2 −m2
t )2(k2 −M2

W )2 .

The b diagrams give the same result, up to a relative minus sign1 (which will match
the sign difference in the effective theory), and having the opposite spinor structure
((v̄v)(ūu) instead of (v̄u)(ūv)) and colour structure (δilδkj instead of δijδkl).

1See for example [163] for a set of Feynman rules which make this sign clear.
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Putting our results together, and using the Fierz identity Equation A.0.3 (which
allows us to relate the two different Dirac structures), we find

iMSM = −iG
2
F

2π2M
2
Wλ

2
tS0(xt)

[
(v̄γµPLu)(ūγµPLv)δijδkl − (v̄γµPLv)(ūγµPLu)δilδkj

]
where

S0(xt) = 4xt − 11x2
t + x3

t

4(xt − 1)2 + 3x3
t ln xt

2(xt − 1)3 (2.4.22)

is the Inami-Lim function [164].

∆B = 2 Matching

Setting iMWET = iMSM, we can read off the coefficient of our effective Hamiltonian
to be

C = G2
F

4π2M
2
Wλ

2
tS0(xt) .

Hence,

M12 = G2
F

4π2λ
2
tM

2
WS0(xt)×

1
2MBs

⟨Bs|O1|Bs⟩

= G2
F

12π2λ
2
tM

2
WS0(xt)f 2

BsMBsB

where B, known as a bag parameter, parameterises the deviation from the VSA (see
Appendix C for details).

In principle we must also consider the RG group running of our operator and Wilson
coefficient – we will not go into detail here, but simply state the effects. Having
matched at the scale µt ∼MW ,mt, we run down to the scale µb ∼ mb. It turns out
that QCD corrections, in contrast to our other EFT case study, do not bring in any
other operators, and so we simply find

M12(µt, µb) = G2
F

12π2λ
2
tM

2
WS0

(
m2

t (µt)
M2

W

)
η̄2B(µt, µb)f 2

BsMBsB(µb)

where at leading order the correction factor is

η̄2B =
(
αs(µt)
αs(µb)

)6/23

.

(Note that in e.g. [165], this quantity is denoted η̂B.) At higher orders, it is seen that
η̄2B is only very weakly dependent on µt if we set our matching scale to be close to the
top mass, as the logarithmic terms are of the form lnµt/mt [166]. Traditionally, the
µb dependence is absorbed into the bag parameter, which then formally cancels its
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scale and scheme dependence, and this parameter then gets called B̂ – this notation
is widely used by lattice groups. We then can write

M12 = G2
F

12π2λ
2
tM

2
WS0

(
m2

t (mt)
M2

W

)
η2B(mt)f 2

BsMBsB̂ , (2.4.23)

with η2B ≈ 0.55. (In the literature, since the mt dependence of η2B is so small, the
mt dependence is often dropped.) It is useful to convert between the “hatted” and
“unhatted” bag parameters, so we quote here the NLO conversion factor [166]:

B̂ = αs(µb)− 6
23

(
1 + αs(µb)

4π
5165
3174

)
B(µb) ≈ 1.5B(µb) (2.4.24)

from which we can find η̄2B ≈ 0.84.

With all this in place, we can finally make a prediction for ∆M – using a recent set
of input (circa 2015) parameters, we find

∆Ms = (18.3± 2.7) ps−1

as the SM prediction [165]. This has been the standard result for the last few years,
but in Chapter 7 we update this in light of new inputs, and examine the consequences
for certain classes of NP model.

2.5 B mixing observables

Following on from our in depth discussion of the calculation of ∆Ms, now seems an
appropriate time to give an overview of the other observables that arise from meson
mixing.

The width difference ∆Γ is calculated in a similar way to ∆M , but with the difference
that we only include diagrams where the intermediate particles can go on shell. A
simple way to understand this is by considering ∆Γ written in the form

∆Γ = ΓBL
− ΓBH

=
∑

f

|⟨f |H|BL⟩|
2 −

∑
f

|⟨f |H|BH⟩|
2 ,

where f denotes final states common to Bs and Bs – the lifetime calculation can only
involve on shell final states.

In the HQE Γ12 can be expanded in powers of Λ/mb

Γ12 = Λ3

m3
b

(
Γ(0)

3 + αs

4πΓ(1)
3 + . . .

)
+ Λ4

m4
b

(
Γ(0)

4 + . . .
)

+ . . . . (2.5.1)



54 Chapter 2. Theoretical Tools

The leading term Γ(0)
3 was calculated quite some time ago by [167–172], the NLO-

QCD corrections Γ(1)
3 were determined in [173–175] and subleading mass corrections

were done in [176–178]. Lattice values for the corresponding operators were deter-
mined by [179–182].

Alongside ∆M and ∆Γ, there is another main observable associated with mixing –
the semileptonic asymmetry or asl. This is a specific example of a so-called “wrong-
sign” CP asymmetry in flavour-specific decays, where flavour-specific means B → f
and B → f are forbidden without mixing. The semileptonic asymmetry is defined
by

asl ≡
Γ(B(t)→ Xℓ+ν)− Γ(B(t)→ Xℓ−ν)
Γ(B(t)→ Xℓ+ν) + Γ(B(t)→ Xℓ−ν)

. (2.5.2)

Expanding in our small parameters as we did in Equation 2.4.16 we find

asl ≈ Im
(

Γ12

M12

)
, (2.5.3)

where as before we have dropped terms of O
(
|Γ12/M12|2

)
, and assumed no CP

violation in this decay channel (which means |⟨Xℓ+ν|B⟩| = |⟨Xℓ−ν |B⟩|). This ratio
expression is nice from a calculational point of view, as various factors which are
less precisely known cancel out when we take the ratio, allowing us to make a more
precise prediction. Something similar can be done for the mass and width differences,
where we find that at the same level of accuracy the real part of the ratio is

Re
(

Γ12

M12

)
≈ − ∆Γ

∆M . (2.5.4)



Chapter 3

Quark-Hadron Duality

3.1 Introduction

In Chapter 1 we discussed how flavour physics is an ideal testing ground for searches
for new physics, as there are many observables which are highly suppressed in the
SM but could easily be enhanced by new physics, as well as many observables for
which a high experimental precision is available – meson mixing observables satisfy
both these criteria. In order to make use of this fact, we must be sure that hadronic
uncertainties are under control in our theoretical calculations, as otherwise we cannot
tell for certain if we are seeing anything new. In this chapter we aim to tackle one
part of this question.

Many current theory predictions rely on the HQE and we will examine how the
idea of quark-hadron duality – which is a basic assumption of the HQE – can
be tested. In order to do this, we use current data from B mixing and B meson
lifetimes to constrain violations of quark-hadron duality, and then see how this affects
the predicted values of other observables. As part of this, we discuss how future
improvements in theory and experiment could further constraint duality violations,
and what level of precision could allow us to properly distinguish genuine new physics
from some non-perturbative contribution to the SM calculation. We also investigate
how the current trouble with inclusive predictions of mixing in the charm sector can
be explained through a mild violation of quark-hadron duality.

Our work in this chapter is organised as follows: in Section 3.2 we explain the basic
ideas of duality violation in the HQE, then we introduce in Section 3.2.1 a simple
parameterisation for duality violation in B mixing and we derive bounds on its
possible size. The lifetime ratio τ(Bs)/τ(Bd) can provide complementary bounds
on duality violation, and so we discuss this in Section 3.2.2. The bounds in the B
system depend strongly on the theory uncertainties, hence we present in Section 3.3
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a numerical update of the mixing observables with an aggressive error estimate for
the input parameters. In Section 3.4 we study possible effects of duality violation in
D mixing. We summarise our findings in Section 3.5 and discuss the outlook for the
future.

3.2 Duality violation

In 1979 the notion of duality was introduced by Poggio, Quinn and Weinberg [183]
for the process e+e− → hadrons.1 The basic assumption is that this process can be
well approximated by a quark level calculation of e+e− → qq . In this work we will
investigate duality in the case of decays of heavy hadrons, which are described by
the HQE (see Section 2.2 for an overview and references to the early works). The
HQE assumes quark-hadron duality, i.e. that the hadron decays can be described
at the quark level. A violation of duality could correspond to non-perturbative
terms like exp(−mb/Λ) (where Λ is the numerator in the HQE) which give vanishing
contributions when Taylor expanded around Λ/mb = 0 (see e.g. [186] and also [187]
for a detailed discussion of duality, its violations and some possible models for
duality violations). To estimate the possible size of these non-perturbative terms
we note that in the case of lifetimes and mixing, the expansion parameter of the
HQE is not Λ/mb but the hadronic scale Λ normalised to the momentum release√
M2

i −M2
f , where Mi is the mass of the initial state and Mf the sum of the final

state masses. As such, the expansion parameter for the quark-level decay b → ccs,
Λ/
√
m2

b − 4m2
c , is considerably larger than for the decay b → uuu, where it is Λ/mb.

Put another way, the less phase space that is accessible in the final state, the worse
the convergence property of the HQE for this class of decays, and the larger might
be the hypothetical duality violating terms. The remaining phase space for Bs decay
into light mesons (e.g. Bs → K−π+, via b → uud), due to the dominant quark level
decay (e.g. Bs → D−

s π
+, via b → cud) and into the leading contribution to ∆Γs

(e.g. Bs → D+
s D−

s , via b → ccs) reads

MBs −MK −Mπ = 4.73 GeV , (3.2.1)

MBs −MD+
s
−Mπ = 3.26 GeV , (3.2.2)

MBs − 2MD(∗)+
s

= 1.43(1.15) GeV . (3.2.3)

The crucial question is whether the phase space in Bs → D(∗)+
s D(∗)−

s is still large
enough to ensure quark-hadron duality.

1The concept of duality was already used in 1970 for electron proton scattering by Bloom and
Gilman [184,185].
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Channel Expansion parameter (= x) Value of x exp(−1/x)

b → ccs Λ√
m

2
b−4m

2
c

≈ Λ
mb

(
1 + 2m

2
c

m
2
b

)
0.054–0.58 9.4× 10−9–0.18

b → cus Λ√
m

2
b−m

2
c

≈ Λ
mb

(
1 + 1

2
m

2
c

m
2
b

)
0.045–0.49 1.9× 10−10–0.13

b → uus Λ√
m

2
b−4m

2
u

= Λ
mb

0.042–0.48 4.2× 10−11–0.12

Table 3.1: Value of the HQE expansion parameter for a range of
values of Λ, mb and mc.

To get some idea of the possible values of the expansion parameter and the non-
perturbative terms in inclusive b quark decays, we vary Λ within 0.2 and 2 GeV,1

mb within 4.18 and 4.78 GeV, and mc within 0.975 and 1.67 GeV – the resulting
numerics are shown in Table 3.1. From this simple numerical exercise we find that
duality violating terms could easily be of a similar size as the expansion parameter of
the HQE. Moreover decay channels like b → ccs might be more strongly affected by
duality violations compared to e.g. b → uus. This agrees with the naive expectation
that decays with a smaller final state phase space might be more sensitive to duality
violation.

Obviously duality cannot be proved directly because this would require a complete
solution of QCD and a subsequent comparison with the HQE expectations, which is
clearly not possible. To make statements about duality violation, in principle there
are two strategies that could be performed:

1. Study simplified models for QCD, e.g. the ’t Hooft model (a two-dimensional
model for QCD, see e.g. [186, 187, 189–192]) and develop models for duality
violations, like instanton-based and resonance-based models (see e.g. [186,187]).

2. Use a pure phenomenological approach, by comparing experiment with HQE
predictions.

In this chapter we will follow the second strategy and use a simple parameterisation
for duality violation in mixing observables and lifetime ratios, which will be most
pronounced for the b → ccs channel.

At this stage it is interesting to note that for many years there have been problems
related to applications of the HQE for inclusive b hadron decays and most of them
seemed to be related to the b → ccs channel:

• For quite some time the experimental value for the Λb lifetime was considerably
lower than early theory predictions [193], which indicated a value quite close

1This is twice the scale one finds in ∆Γs, where Λ/mb ≈ 1/5 [188].
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to the Bd lifetime (see [141] for a detailed review). These results triggered
theoretical attempts to explain the discrepancy with a failure of the HQE, see
e.g. the discussion in [194], where a simple model for a modification of the
HQE was suggested in order to explain experiment, see also [195] and [196].
The dominant contribution to the Λb lifetime is given by the b → cud and
b → ccs transitions. To a large extent the Λb lifetime problem has now
been solved experimentally, see the detailed discussion in [141], mostly by new
measurements from LHCb [197–199] and the new data confirm the early theory
estimates [193]. However, there is still a large theory uncertainty remaining
due to unknown non-perturbative matrix elements that could be calculated
with current lattice QCD techniques.

• For quite some time the values of the inclusive semi-leptonic branching ratio of
B mesons as well as the average number of charm quarks per b decay (missing
charm puzzle) disagreed between experiment and theory, see e.g. [200–203].
Modifications of the decay b → ccs were considered as a potential candidate
for solving this problem. This issue has been improved considerably by new
data and new calculations [204]. Again, there still a considerable uncertainty
remains due to unknown NNLO QCD corrections. First estimates suggest that
such corrections could be large [205].

• Because of a cancellation of weak annihilation contributions it is theoretically
expected (based on the HQE) that the Bs lifetime is more or less equal to the
Bd lifetime, see e.g. an early estimate from 1986 [193] or the review [141] for up-
dated values. For quite some time experiment found deviations of τ(Bs)/τ(Bd)
from one – we have plotted the experimental averages from HFLAV [143] from
2003 onwards in Figure 3.1. Currently there is still a small difference between
data and the HQE prediction, which will be discussed further in Section 3.2.2.
Here again a modification of the b → cud and/or the b → ccs transitions
might solve the problem.

All of these problems have softened considerably since being recognised and huge
duality violations are now ruled out by experiment [206], in particular by the mea-
surement of the decay rate difference of neutral Bs mesons, ∆Γs, which is to a good
approximation a b → ccs transition. But there is still space for a small amount of
duality violation – which will be quantified in this chapter. We will thus investigate
the decay rate difference ∆Γs in more detail.

We show in Table 3.2 the theory and experimental values we use in the rest of
this chapter. The most recent numerical update for the mixing quantities is given
in [165] (superseding the numerical predictions in [207,208]) which is where we take
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Figure 3.1: Historical values of the lifetime ratio τ(Bs)/τ(Bd) as re-
ported by HFLAV [143] since 2003. The solid line shows
the central value and the shaded line indicates the 1σ
region, the dotted line corresponds to the theory predic-
tion, which is essentially one, with a tiny uncertainty.

Observable SM Experiment
∆Ms / ps−1 18.3± 2.7 17.757± 0.021
∆Γs / ps−1 0.088± 0.020 0.082± 0.006
as

sl / 10−5 2.22± 0.27 170± 300
∆Γs/∆Ms / 10−4 48.10± 8.32 46.2± 3.4
∆Md / ps−1 0.528± 0.078 0.5055± 0.0020
∆Γd / 10−3 ps−1 2.61± 0.59 0.66± 6.60
ad

sl / 10−4 −4.7± 0.6 −15± 17
∆Γd/∆Md / 10−4 49.4± 8.5 13± 130

Table 3.2: SM predictions and experimental measurements that will
be used for the work in this chapter.

our SM predictions from, and can be compared to the experimental values from
HFLAV [209, 210] (except the experimental average for as

sl which has been taken
from [211]). The theory prediction uses conservative ranges for the input parameters
– we will present a more aggressive estimate in Section 3.3. Experiment and theory
agree very well for the quantities ∆Mq and ∆Γs. The semileptonic asymmetries
and the decay rate difference in the Bd system have not been observed yet. More
profound statements about the validity of the theory can be made by comparing the
ratio of ∆Γs and ∆Ms, where some theoretical uncertainties cancel and we get(

∆Γs

∆Ms

)exp

(
∆Γs

∆Ms

)SM = 0.96± 0.22 . (3.2.4)
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The central value shows a very good agreement of experiment and HQE predictions.
The remaining uncertainty leaves some space for new physics effects or for violations
of duality. We have taken here the 2σ range of the experimental value, while we
consider the theory range to cover all allowed values. Thus we conclude that in the
most sensitive decay channel, b → ccs, duality seems to be violated by at most 22 %.
In the next section we try to investigate these possibilities in more detail.

3.2.1 B mixing

For the discussion in the rest of this section, it will be useful to separate out the
CKM dependence of M12 and Γ12. We can write

Γs
12 = −

∑
x=u,c

∑
y=u,c

λxλyΓs,xy
12 , M s

12 = λ2
tM̃

s
12 . (3.2.5)

where λq = V ∗
qsVqb. For simplicity we give only the expressions for Bs mesons when

modifications for Bd mesons are obvious, and we will explicitly present expressions for
the Bd sector only when they are non-trivial. As we saw in Section 2.5, the physical
observables ∆Ms, ∆Γs and as

sl are related to the ratio Γs
12/M

s
12 via Equations 2.5.3

and 2.5.4. Using the unitarity of the CKM matrix we can write

− Γs
12

M s
12

= Γs,cc
12

M̃ s
12

+ 2λu

λt

Γs,cc
12 − Γs,uc

12

M̃ s
12

+
(
λu

λt

)2 Γs,cc
12 − 2Γs,uc

12 + Γs,uu
12

M̃ s
12

(3.2.6)

= −10−4

c+ a
λu

λt

+ b

(
λu

λt

)2
 . (3.2.7)

The a, b and c notation of Equation 3.2.7 comes from [175]. The way of writing
Γs

12/M
s
12 in Equations 3.2.6 and 3.2.7 can be viewed as a Taylor expansion in the

small CKM parameter λu/λt, for which we get (using the input parameters of [165])

Bs : λu

λt

= (−8.05 + 18.1i)× 10−3,

(
λu

λt

)2

= (−2.63− 2.91i)× 10−4 .

Bd : λu

λt

= (7.55− 405i)× 10−3,

(
λu

λt

)2

= (−164− 6.11i)× 10−3 .

(3.2.8)

In addition to the CKM suppression a pronounced GIM cancellation arises in the
coefficients a and b in Equation 3.2.7. With the input parameters described in [165]
we get for the numerical values of a, b and c:

Bs : c = −48.0± 8.3, a = 12.3± 1.4, b = 0.79± 0.12 .
Bd : c = −49.5± 8.5, a = 11.7± 1.3, b = 0.24± 0.06 .

(3.2.9)

From this hierarchy we see that (to a very good approximation) ∆Γq/∆Mq is given
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Observable Bs Bd

∆Γ
∆M

48.1(1 + 3.95δ)× 10−4 49.5(1 + 3.76δ)× 10−4

∆Γ 0.0880(1 + 3.95δ)ps−1 2.61(1 + 3.76δ)× 10−3 ps−1

asl 2.225(1− 22.3δ)× 10−5 −4.74(1− 24.5δ)× 10−4

Table 3.3: Dependence on δ of the mixing observables. The expres-
sions for ∆Γq were obtained by simply multiplying the
theory ratio ∆Γq/∆Mq with the theoretical values of the
mass difference, as given in Table 3.2.

by −c× 10−4 and aq
sl by Im(λu/λt)× a× 10−4.

We now introduce our simple phenomenological model for duality violation. As such
effects are expected to be inversely proportional to the phase space of a decay, as we
observed in Section 3.2, we write to a first approximation:1

Γs,cc
12 → Γs,cc

12 (1 + 4δ) , (3.2.10)
Γs,uc

12 → Γs,uc
12 (1 + δ) , (3.2.11)

Γs,uu
12 → Γs,uu

12 (1 + 0δ) . (3.2.12)

It is already obvious at this stage that such a model will soften the GIM cancellations
in the ratio Γs

12/M
s
12 – we get

Γs
12

M s
12

= 10−4
[
c(1 + 4δ) + λu

λt

(a+ δ(6c+ a)) + λ2
u

λ2
t

(b+ δ(2c+ a))
]
. (3.2.13)

From our earlier observations we expect ∆Γs/∆Ms ≈ −c(1 + 4δ)× 10−4, but more
interestingly the semi-leptonic CP asymmetries will be approximately given by
as

sl ≈ Im(λu/λt) [a+ δ(6c+ a)] × 10−4 – the duality violating coefficient δ is GIM
enhanced by (6c + a) compared to the leading term a. As such, an agreement be-
tween experiment and theory for the semileptonic CP asymmetries could provide
very strong constraints on duality violation. Using the values of a, b and c from
Equation 3.2.9 and the CKM elements from Equation 3.2.8, we get the dependence
on the duality violating parameter δ of the mixing observables that is shown in
Table 3.3. As expected we find that the duality violating parameter δ has a decent
leverage on ∆Γq and a sizeable one on aq

sl.

Comparing experiment and theory for the ratio of the decay rate difference ∆Γs and
the mass difference ∆Ms we found in Equation 3.2.4 an agreement with a deviation
of at most 22 %. Thus the duality violation – i.e. the factor 1 + 3.95δ in Table 3.3 –

1Similar models have been used in [212–214] for penguin insertions with a cc-loop.
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has to be smaller than this uncertainty:

1 + 3.95δ ≤ 0.96± 0.22⇒ δ ∈ [−0.066, 0.046] , (3.2.14)

Equivalently this bound tells us that the duality violation in the cc-channel is at
most +18.2 %, or −26.3 % if the effect turns out to be negative. If experiment and
theory would also agree to within 22 % for the semileptonic asymmetry as

sl, then we
could shrink the bound to δ down to 0.01, but for the moment experiment is still
far away from the SM prediction (see Table 3.2). However, we can turn around the
argument: even in the most pessimistic scenario – i.e. having a duality violation that
lifts GIM suppression – the theory prediction of as

sl can at most be in the range

as
sl ∈ [−0.06, 5.50]× 10−5 . (3.2.15)

In the Bd system, making a similar comparison of experiment and theory for ∆Γ/∆M
turns out to be tricky, since ∆Γd is not yet measured. Because of this large uncer-
tainty in the current experimental bound on ∆Γd, we would get artificially large
bounds on δ. If we look at the structure of the loop contributions necessary to calcu-
late Γd

12 and Γs
12, we find very similar cc-, uc-, cu- and uu-contributions. Our duality

violation model is based on the phase space differences of decays like Bs → DsDs

(cc), Bs → DsK (uc), (cu) and Bs → πK (uu), which are very pronounced. On
the other hand we find that the phase space differences of Bs and Bd decays are
not very pronounced, i.e. the difference between e.g. Bs → DsDs vs. Bd → DsD is
small, compared to the above differences due to different internal quarks. As such,
we conclude that applying the duality violation bounds from the Bs system to the
Bd system is a good approximation. With the Bs bound we find that the theory
prediction of ad

sl and ∆Γd can be altered due to duality violations to at most

ad
sl ∈ [−12.4,−0.6]× 10−4 , (3.2.16)

∆Γd ∈ [1.96, 3.06]× 10−3 ps−1 . (3.2.17)

These numbers can be compared to the SM values shown in Table 3.2. In principle
any measurement of these observables outside the ranges in Equations 3.2.15 to 3.2.17
would be a clear indication of new physics.

Since our conclusions (new physics or unknown hadronic effects) are quite far-
reaching, we try to be as conservative as possible and from now on use a likelihood
ratio test to set a 95 % confidence limit on our duality violating parameters. Our
more conservative bound for δ is now given by

δ ∈ [−0.12, 0.10] . (3.2.18)
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This more conservative statistical method doubles the allowed region for δ. Inserting
these values into the predictions for ad,s

sl and ∆Γd we see that duality violation can
give at most the following ranges for the mixing observables:

as
sl ∈ [−2.8, 8.2]× 10−5 , (3.2.19)
ad

sl ∈ [−18.7, 6.9]× 10−4 , (3.2.20)
∆Γd ∈ [1.4, 3.6]× 10−3 ps−1 . (3.2.21)

The second modification to ensure that our estimates are conservative concerns our
ad-hoc ansatz in Equations 3.2.10 to 3.2.12, where we assumed that the cc-part is
affected by duality violations four times as much as the cu-part and the uu-part is
not affected at all; we can obtain more general results with the following modification

Γs,cc
12 → Γs,cc

12 (1 + δcc) , (3.2.22)
Γs,uc

12 → Γs,uc
12 (1 + δuc) , (3.2.23)

Γs,uu
12 → Γs,uu

12 (1 + δuu) , (3.2.24)

with δcc ≥ δuc ≥ δuu and the requirement that all δs must have the same sign. Now
we get for the observables

∆Γs

∆Ms

= 48.1(1 + 0.982δcc + 0.0187δuc − 0.000326δuu)× 10−4 , (3.2.25)

∆Γd = 26.1(1 + 0.852δcc + 0.350δuc − 0.202δuu)× 10−4 ps−1 , (3.2.26)
as

sl = 2.225(1− 7.75δcc + 8.67δuc + 0.0780δuu)× 10−5 , (3.2.27)
ad

sl = −4.74(1− 8.52δcc + 9.60δuc − 0.0787δuu)× 10−4 . (3.2.28)

In the case of ∆Γs/∆Ms, which will be used to determine the size of the duality
violating δs, the coefficients of the uu component are suppressed by more than
three orders of magnitude compared to the rest and therefore neglected. For the
semileptonic CP asymmetries the uu duality violating component is about two orders
of magnitude lower than the rest, and again we neglect the uu component in the
following. This might lead to an uncertainty of about 20 % in the duality bounds
for ∆Γd, which we will keep in mind.

Considering only δcc and δuc we get with the likelihood ratio test the bounds depicted
in Figure 3.2. In the figure we see that a duality violation of no more than 60 %
is allowed in either Γs

cc or in Γs
uc. We also see that it is in principle possible to

see duality violation in ∆Γs but not in as
sl and vice versa. Moreover we find from

the functional form of as
sl, that this quantity achieves a maximum (minimum) when

δuc = 0 and δcc < 0 (> 0). Our generalised parameterisation of duality violation
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Figure 3.2: 95 % confidence limits on δcc and δuc for the Bs sys-
tem from a comparison of the experimentally allowed
region of ∆Γs/∆Ms with the theory expression in Equa-
tion 3.2.25. The allowed regions for the δs are shaded
blue. A deviation of the δs from zero will also affect the
theory prediction of as

sl in Equation 3.2.27. The mod-
ification factors of as

sl/a
s,SM
sl are denoted by the black

lines.

gives now the most conservative bounds on the mixing observables

as
sl ∈ [−6.7, 12.5]× 10−5 , (3.2.29)
ad

sl ∈ [−29, 16]× 10−4 , (3.2.30)
∆Γd ∈ [0.7, 4.2]× 10−3 ps−1 . (3.2.31)

The duality bound on ad
sl overlaps largely with the current experimental bound on

this observable – in this case a future improvement in the measurement of ad
sl will

give an additional bound on duality violation.

We are now in a position to make a strong statement: any measurement outside this
range is very unlikely to be due to duality violation, and so must be considered as a
strong signal for new physics.

Since the ranges in Equations 3.2.29 to 3.2.31 are considerably larger than the
uncertainties of the corresponding SM prediction given in Table 3.2, we now discuss
the question of how to further shrink our bounds on duality violation. Currently
the bound comes entirely from ∆Γs/∆Ms, where the combined experimental and
theoretical uncertainty comes to 22 %. Any improvement on this uncertainty will
shrink the allowed regions on δ. In Section 3.3 we will discuss a more aggressive
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Figure 3.3: On the left, a comparison of SM prediction (green), SM
+ duality violation (yellow), SM + duality violation
in future (red) and current experimental (blue) bound
for ∆Γd. On the right, the experimental bounds on ad

sl
(green) and as

sl (blue) are shown in comparison to their
theory values. The uncertainties of the SM predictions
are too small to be resolved, the regions allowed by
duality violation are shown in yellow (as

sl) and red (ad
sl).

Any measurement outside these duality allowed theory
regions will be a clear indication for new physics. For
ad

sl the duality allowed region (red) has a pronounced
overlap with the experimental one, while in the future
this region could be shrink to the dark blue region. The
theory uncertainties for the future duality region of as

sl
are so small, that they cannot be resolved in the plot.

estimate of the theory predictions for the mixing observable, indicating that a theory
uncertainty of about 10 % or even 5 % in ∆Γs/∆Ms might come into sight. Also
including possible improvements in experiment, this indicates a region for δ could be
found that is considerably smaller than the ones given in Equations 3.2.29 to 3.2.31.
The current (and a possible future) situation is summarised in Figure 3.3. On
the left ∆Γd is investigated. The current experimental bound is given by the blue
region, which can be compared to the SM prediction (green). As we have seen
above, because of still sizeable uncertainties in ∆Γs duality violation of up to 60 %
cannot currently be excluded – this leads to an extended region (yellow) for the SM
prediction including the effects of duality violation. If in future ∆Γs were known
with a precision of about 5 % in both theory and experiment, then the yellow region
will shrink to the red one – obviously in this scenario the intrinsic precision of the SM
value will be reduced. In other words: currently any measurement of ∆Γd outside
the yellow region will be a clear signal of new physics, in the future any measurement
outside the red region will be a signal of new physics. The same logic is applied
for the right of Figure 3.3, where ad

sl and as
sl are investigated simultaneously. For
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Figure 3.4: Diagrams contributing to the Γq
12 (left) and diagrams

contributing to the lifetime of a Bq meson (right).

as
sl still any measurement outside the bounds in Equation 3.2.29 would be a clear

indication of new physics. This bound is denoted in Figure 3.3 by the tiny yellow
region. For ad

sl the current experimental region is given by the green area, which
is slightly smaller than the red region, which is indicating the theory prediction
including duality violation. Future improvement in experiment and theory for ∆Γs

will reduce the red region to the purple one and then any measurement outside the
dark blue region will be a clear signal of new physics.

Following this discussion, we now turn to the question of if there are more observables
that will be affected by the duality violations. An obvious candidate is the lifetime
ratio τ(Bs)/τ(Bd), where the dominant diagrams are very similar to the mixing ones,
and this observable will be studied further in Section 3.2.2.

3.2.2 Duality bounds from lifetime ratios

Very similar diagrams to the ones in Γq
12 arise in the lifetime ratio τ(Bs)/τ(Bd), as

we see from Figure 3.4. The obvious difference between the two diagrams is the
trivial exchange of b and q lines at the right end of the diagrams. A more subtle
and more important difference lies in the possible intermediate states, which comes
from cutting the diagrams down the middle. In the case of lifetimes all possible
intermediate states that can originate from a xȳ quark pair can appear, while in the
case of mixing, we have only the subset of all intermediate states into which both
Bq and B q can decay. Because of the larger set of intermediate states, one would
expect that duality works better in the lifetimes than in mixing. Independent of this
observation, our initial argument that the phase space for intermediate cc-states
is smaller than the one for intermediate uc-states, which is again smaller that the
uu-case, still holds. Hence we assume that the xȳ-loop for the lifetime ratio, has the
same duality violating factor δxy as the xȳ-loop for Γq

12. It turns out that the largest
weak annihilation contribution to the Bs lifetime is given by a cc-loop, while for the
Bd lifetime a uc-loop is dominating. This tells us that duality will not drop out in
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the lifetime ratio, because the dominating contributions for Bs and Bd are affected
differently. Using our previously described model and modifying the cc-loop with
a factor 1 + 4δ and the uc-loop with a factor 1 + δ, we get with the expressions
in [141,195,196,215]

τ(Bs)
τ(Bd) = 1.00050± 0.00108− 0.0225 δ . (3.2.32)

A detailed estimate of the theoretical error is given in Table D.1, since the previous
SM prediction from [141] had an error twice as large. Unfortunately the SM predic-
tion relies strongly on lattice calculations that are 17 years old [216], and the only
update since then is our work in Chapter 6 (a more detailed discussion of the status
of lifetime predictions can be found in [141]). Despite this, we find that the duality
violating factor δ can have a large impact on the final result; a value of δ = 0.1
would give corrections of the same size as the SM uncertainty.

Our theory prediction can be compared to the current experimental value for the
lifetime ratio [210]

τ(Bs)
τ(Bd) = 0.990± 0.004 . (3.2.33)

If the deviation between theory and experiment is attributed to duality violation,
then we get an allowed range for δ of

δ ∈ [0.13, 0.80] . (3.2.34)

There is currently a discrepancy of about 2.5σ between experiment (Equation 3.2.33)
and theory (Equation 3.2.32) and this difference could stem from new physics or
a sizeable duality violation of δ ≈ 0.5 in lifetimes. Of course it is also worth
bearing in mind the historical evolution of the experimental values, as seen in
Figure 3.1, when considering this deviation. The allowed region of the duality
violating parameter δ can be read off Figure 3.5, where the current experimental
bound from Equation 3.2.33 is given by the blue region and theory prediction
including hypothetical duality violation by the red region. Since 2.5σ is not enough to
justify profound statements, we consider next future scenarios where the experimental
uncertainty of the lifetime ratio will be reduced to 0.1 %.

• Scenario I: the central value will stay at the current slight deviation from one:

τ(Bs)
τ(Bd)

Scenario I

= 0.990± 0.001 . (3.2.35)

This scenario corresponds to a clear sign of duality violation or new physics in
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Figure 3.5: Duality bounds extracted from the lifetime ratio
τ(Bs)/τ(Bd). The red band shows the theoretical ex-
pected value, with the δ dependence given in Equa-
tion 3.2.32. The current experimental bound is given
by the blue region and the overlap of both gives the
current allowed region δ, indicated in Equation 3.2.34.
The future scenarios are indicated by the purple band
(Scenario I) and the green band (Scenario II). Again the
overlap of the future scenarios with the theory predic-
tion gives future allowed regions for δ – in this figure the
naive overlap of both regions is shown, this corresponds
to a linear addition of uncertainties and leads thus to
slightly bigger ranges of δ compared to the main text
(Equations 3.2.36 and 3.2.38).
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the lifetime ratio. Assuming the first one, we get a range of δ of

δ ∈ [0.34, 0.60] . (3.2.36)

Thus the lifetime ratio requires large values of δ. Our final conclusions depend
now on the future developments of ∆Γs. Currently ∆Γs requires small values
of δ, which is in contrast to scenario I. Thus we have to assume additional
new physics effects – either in mixing or in lifetimes – that might solve the
discrepancy. Alternatively, if in the future the theory value of ∆Γs goes up
or the experimental value goes down, then mixing might also require a big
value of δ and we then would have duality violation as a simple solution for
explaining discrepancies in both lifetimes and Bs mixing.

• Scenario II: the central value will go up to the SM expectation:

τ(Bs)
τ(Bd)

Scenario II

= 1.000± 0.001 , (3.2.37)

In that case we will find only a small allowed region for δ around zero

δ ∈ [−0.11, 0.15] . (3.2.38)

The above region is, however, still larger than the one obtained from ∆Γs. New
lattice determinations of lifetime matrix elements might change this picture
and in the end the lifetime ratio might also lead to slightly stronger duality
violating bounds than ∆Γs. Again our final conclusion depends on future
developments related to ∆Γs. If both experiment and theory for mixing stay
at their current central values, we simply get very strong bounds on δ. If
theory or experiment will change in future, when we could have indications
for deviations in mixing, which have to be compared to the agreement of
experiment and theory for lifetimes in Scenario II.

In Section 3.3 we will discuss a possible future development of future theory predic-
tions for mixing observables.

Before we proceed let us make a comment about our duality model. In principle
we also could generalise our duality ansatz in the same way as we did for Γ12. This
would leave to the following expression

τ(Bs)
τ(Bd) = 1 + 0.0005(1− 13.4δcc + 8.92δuc) (3.2.39)

Here we see a pronounced cancellation of the cc and the uc contribution, if we allow
δcc to be close in size to δuc. This is not what we expect from our phase space
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estimates for duality violation, and would allow an unphysically large upper limit
on duality violation, and so we use for the lifetime ratio only our simple model and
the corresponding result given in Equation 3.2.32.

3.3 Numerical Updates of Standard Model
Predictions

We have already pointed out that more precise values of ∆Γs are needed to derive
more stringent bounds on duality violation in the B system. Very recently the Fer-
milab MILC collaboration presented a comprehensive study of the non-perturbative
parameters that enter B mixing [217].1 A brief summary of their results reads:

• Improved numerical values for the matrix elements of the operators O1−5 and
R0 that are necessary for ∆Γq and ∆Mq.2 With these results, we have numerical
values for all operators that arise up to dimension seven in the HQE, except
⟨R2⟩ and ⟨R3⟩ which are still unknown and can only be estimated by assuming
the vacuum saturation approximation.

• The numerical values of f 2
Bq
B are larger than in most previous lattice calcula-

tions.

• We have a very strong confirmation of the vacuum saturation approximation,
since all their bag parameters turn out to be in the range 0.8–1.2.

Based on these new results we perform a more aggressive numerical analysis of the
SM predictions, where we try to push the current theory uncertainties to the limits.
(These results also form part of the basis of our work in Chapter 7.) In particular
we will modify the predictions in [165] by doing the following:

1. We use the most recent (at time of writing) values of the CKM parameter from
CKMfitter [219]..

2. We take the new Fermilab MILC results for the bag parameters of ⟨O1⟩, ⟨O3⟩,
⟨O4⟩, ⟨O5⟩ and ⟨R0⟩. (Note that they quote values for the bag parameters of
the operators R1, R̃1 which are proportional to those for O4,O5, and it is these
we use these in our calculation.) We do not try to average with other lattice
results, e.g. the values given by FLAG [220].

1A numerical analysis with these new inputs was already performed in [218], but the authors put
emphasis on the implications for the correlation between ∆Ms,d and εK in models with constrained
MFV and the implications for ∆Γs,d were not been analysed.

2R0 is a 1/mb suppressed operator which is a linear combination of O1,2,3 [176,207].
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Observable SM (conservative) SM (agressive) Experiment
∆Ms / ps−1 18.3± 2.7 20.11± 1.37 17.757± 0.021
∆Γs / ps−1 0.088± 0.020 0.098± 0.014 0.082± 0.006
as

sl / 10−5 2.22± 0.27 2.27± 0.25 170± 300
∆Γs

∆Ms
/ 10−4 48.1(1± 0.173) 48.8(1± 0.125) 46.2(1± 0.073)

∆Md / ps−1 0.528± 0.078 0.606± 0.056 0.5055± 0.0020
∆Γd / 10−3 ps−1 2.61± 0.59 2.99± 0.52 0.66± 6.60
ad

sl / 10−4 −4.7± 0.6 −4.90± 0.54 −15± 17
∆Γd

∆Md
/ 10−4 49.4(1± 0.172) 49.3(1± 0.149) 13(1± 10)

Table 3.4: New predictions for mixing observables with “aggressive”
input choices, with a comparison to the usual SM pre-
dictions and experimental measurements.

3. We assume the vacuum saturation approximation for R2 and R3 with a small
uncertainty of B = 1 ± 0.2. We note that this is the most aggressive change
as no calculation of these bag parameters has yet been done.

4. We use results derived from equations of motion B̃R3 = 7/5BR3 − 2/5BR2 and
B̃R2 = −BR2 [176].

All our inputs are listed in Table D.2. We first note a few things: that the overall
normalisation due to f 2

Bq
B seems to be considerably enhanced now, so we expect

enhancements in ∆Mq and ∆Γq individually (but that will cancel in the ratio); that
the uncertainty in the bag parameter ratio B3/B1 is larger than e.g. in [165]; and
that the dominant uncertainty due to R2 and R3 will now be dramatically reduced.

Putting everything together, we show in Table 3.4 our updated predictions with the
new parameters for the two neutral B systems, which are compared with the more
conservative theory predictions [165] and the experimental values from HFLAV [210]
which were already given in Table 3.2.

The new theory values for ∆Mq and ∆Γq are larger than the ones presented in [165]
and they are further from experiment. For the ratios ∆Γq/∆Mq and aq

sl the central
values are only slightly enhanced. The overall error shrinks by about a factor of
two for ∆Ms and also sizeably for ∆Md, ∆Γq and the ratios ∆Γq/∆Mq. For the
semileptonic asymmetries the effect is less pronounced. A detailed breakdown of the
errors is given in Tables D.3 to D.10.

It is now interesting to consider the ratios of the new SM predictions normalised to
the experimental numbers.

∆M exp
s

∆MSM (agr.)
s

= 0.88(1± 0.060(theory)± 0.001(exp)) (3.3.1)
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= 0.88(1± 0.06) , (3.3.2)
∆Γexp

s

∆ΓSM (agr.)
s

= 0.836(1± 0.12(theory)± 0.06(exp)) (3.3.3)

= 0.84(1± 0.13) , (3.3.4)(
∆Γs

∆Ms

)exp

(
∆Γs

∆Ms

)SM (agr.) = 0.947(1± 0.12(theory)± 0.07(exp)) (3.3.5)

= 0.95(1± 0.14) , (3.3.6)
∆M exp

d

∆MSM (agr.)
d

= 0.83(1± 0.08(theory)± 0.003(exp)) (3.3.7)

= 0.83(1± 0.08) . (3.3.8)

Here one clearly sees the enhancements of the mass differences, which are up to 20 %
or more than two standard deviations above the experimental value. The decay rate
difference ∆Γs is also enhanced by about 20 % above the measured value; due to
larger uncertainties, this is statistically less significant. The dominant source for this
enhancement is the new value of ⟨O1⟩. The ratio ∆Γs/∆Ms is slightly lower than
before, but still consistent with the corresponding experimental number.

Taking the deviations above seriously, we can think about several possible interpre-
tations:

1. Since duality violations do not affect ∆M , they alone cannot explain the
deviations. Statistical fluctuations in the experimental results of the order
of three standard deviations might explain the deviation in ∆Γs, while the
deviation in ∆Ms cannot be explained by a fluctuation in the experiment.

2. The lattice normalisation for f 2
BB is simply too high, future investigations will

bring down the value and there is no NP in mixing. Currently there is no
reason to favour this possibility, but we try to leave no stone unturned. Since
f 2

BB cancels in the ratio of mass and decay rate difference, we can use the new
values to give the most precise SM prediction of ∆Γs via

∆Γs

∆Ms

· 17.757 ps−1(≡ ∆M exp
s ) = (0.087± 0.010) ps−1 . (3.3.9)

Now the theory error is very close to the experimental one and it would be
desirable to have more precise values in both theory and experiment. In
that case we also get an indication of the short-term perspectives for duality
violating bounds. The above numbers indicate an uncertainty of ±0.145 for the
ratio ∆Γs/∆Ms, which corresponds (if we had perfect agreement of experiment
and theory) to a bound on δ of ±0.037. This would already be a considerable
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improvement compared to the current situation.

3. Finally the slight deviation might be a first hint for NP effects.

(a) To explain the deviation in the decay rate difference we need new physics
effects in tree-level decays, while the deviation in M12 could be solved by
new physics effects in loop contributions.

(b) In principle there is also the possibility of new tree-level effects that modify
both ∆Γs and ∆Ms, but which cancels in the ratio. (∆Ms is affected by
a double insertion of the new tree-level operators.) Following the strategy
described in e.g. [221], we found, however, that the possible effects on the
mass difference are much too small.

(c) Finally there is also the possibility of a duality violation of about 20 %
in ∆Γs, while the deviation in ∆Ms is due to new physics at loop level.
This possibility can be tested in the future by more precise investigations
of the lifetime ratio τ(Bs)/τ(Bd).

In order to draw any definite conclusions about these interesting possibilities, we
need improvements in several sectors: from experiment we need more precise values
for ∆Γs and τ(Bs)/τ(Bd), as well as a first measurement of ∆Γd which would also be
very helpful. A measurement of the semileptonic asymmetries outside the duality-
allowed regions would already be a clear manifestation of new physics in the mixing
system. From the theory side we need (in ranked order):

1. A first principle determination of the dimension-seven operators BR2,3 and the
corresponding colour-rearranged ones.

2. Independent non-perturbative determinations (lattice, sum rules) of the matrix
elements ⟨O1⟩, ⟨O2⟩, ⟨O3⟩, ⟨O4⟩, ⟨O5⟩ and ⟨R0⟩. We provide a sum rule
determination of all these operators except R0 in Chapter 6.

3. NNLO QCD calculations for the perturbative part of Γ12. First steps in this
direction have been done in [222].

4. An updated result for the dimension-six operators for meson lifetimes. We use
sum rules to calculate these in Chapter 6, but a lattice calculation would still
be desirable.

These improvements seem possible in the next few years and they might lead to
a reduction of the theory error as low as 5 % (see Chapter 7 where we achieve a
precision of around 6 % in ∆Ms) and thus might be the path to a detection of new
physics effects in meson mixing.
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3.4 D mixing

Mixing in D mesons is by now experimentally well established and the values of the
mixing parameters are quite well measured [223]:

x = (0.37± 0.16)× 10−2 , (3.4.1)
y = (0.66+0.07

−0.10)× 10−2 . (3.4.2)

Using τ(D0) = 0.4101 ps [224], this can be translated into

∆MD = x

τ(D0)
= 0.0090 ps−1 , (3.4.3)

∆ΓD = 2 y

τ(D0)
= 0.032 ps−1 . (3.4.4)

When trying to compare these numbers with theory predictions, we face the problem
that it is not obvious if our theory tools also work in the D system (see also the
discussion in Section 2.2). The mixing quantities have been estimated via both
inclusive and exclusive approaches. Inclusive HQE calculations work very well in the
B system, but their naive application to the D system gives results that are several
orders of magnitude lower than the experimental result [225, 226]. The exclusive
approach is mostly based on phase space and SU(3)F -symmetry arguments, see for
example [227,228]. Within this approach values for x and y of the order of 1 % can
be obtained. So while it is not a real first principles approach, this method seems
to be our best currently available tool to describe D mixing. Given this status, it
seems we are left with some of the following options:

• The HQE is simply not valid in the charm system. This obvious solution might
however, be challenged by the fact that the tiny theoretical D mixing result
is solely caused by an extremely effective GIM cancellation [36] (see e.g. the
discussion in [229]), and not by the smallness of the first terms of the HQE
expansion. A breakdown of the HQE in the charm system could best be tested
by investigating the lifetime ratio of D mesons. From the theory side, the
NLO QCD corrections for the lifetime ratio have been determined in [230]
and it seems that the experimental measured values can be reproduced. To
draw a definite conclusion about the agreement of experiment and theory for
lifetimes and thus about the convergence of the HQE in the charm system,
lattice evaluations of the unknown charm lifetime matrix elements are urgently
needed. We make an initial calculation of these matrix elements in Chapter 6
using sum rules and at first sight it seems that the HQE is working.

• Bigi and Uraltsev pointed out in 2000 [231] that the extreme GIM cancellation
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in D mixing might be lifted by higher terms in HQE. There are indications for
such an effect (see [229,232]) but it is not yet clear whether the effect is large
enough to explain the experimental mixing values. To make further progress in
that direction we need the perturbative calculation of the higher order terms of
the OPE and an idea of how to estimate the matrix elements of the operators
that arise.

• The deviation of theory and experiment could of course also be due to new
physics effects. Bounds on new physics models have been studied in e.g. [233],
where they determined the NP contribution to D mixing, while more or less
neglecting the SM contributions.

In this work we will investigate the related question of whether relatively small
duality violating effects in inclusive charm decays could explain the deviation between
experiment and the inclusive approach. We consider the decay rate difference ∆ΓD

for this task. According to the relation

∆ΓD ≤ 2|Γ12| , (3.4.5)

(see Appendix D.2 for a derivation) we will only study |Γ12| and test whether it can
be enhanced close to the experimental value of the decay rate difference. This is of
course a necessary, but not sufficient condition for an agreement of experiment and
theory. A complete answer would also require a calculation of M12, which is beyond
the scope of this work.

Γ12 consists again of three CKM contributions

Γ12 = −
(
λ2

sΓss
12 + 2λsλdΓsd

12 + λ2
dΓdd

12

)
, (3.4.6)

with the CKM elements λd = VcdV
∗

ud and λs = VcsV
∗

us. Using as before the unitarity
of the CKM matrix (λd + λs + λb = 0) we get

Γ12 = −λ2
s

(
Γss

12 − 2Γsd
12 + Γdd

12

)
+ 2λsλb

(
Γsd

12 − Γdd
12

)
− λ2

bΓdd
12 . (3.4.7)

The CKM-factor have now a very pronounced hierarchy, they read

λ2
s = (4.82− 0.0003i)× 10−2 , (3.4.8)

2λsλb = (2.50 + 5.91i)× 10−5 , (3.4.9)
λ2

b = (−1.49 + 1.53i)× 10−8 . (3.4.10)

The expressions for Γxy
12 can be expanded in powers of z̄s = (m̄s(m̄c)/m̄c(m̄c))2 ≈
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0.0092.

Γss
12 = 1.8696− 5.5231z̄s − 13.8143z̄2 +O

(
z̄3
)
, (3.4.11)

Γsd
12 = 1.8696− 2.7616z̄s − 7.4906z̄2 +O

(
z̄3
)
, (3.4.12)

Γdd
12 = 1.8696 . (3.4.13)

Looking at the expressions in Equation 3.4.7 we see an extreme GIM cancellation in
the CKM-leading term, while the last term without any GIM cancellation is strongly
CKM suppressed. We get

Γss
12 − 2Γsd

12 + Γdd
12 = 1.17z̄2 − 59.5z̄3 + . . . , (3.4.14)

Γsd
12 − Γdd

12 = −2.76z̄ + . . . . (3.4.15)

Using our simplest duality violating model

Γss
12 → Γss

12(1 + 4δ) , (3.4.16)
Γsd

12 → Γsd
12(1 + δ) , (3.4.17)

Γdd
12 → Γdd

12(1 + 0δ) , (3.4.18)

we find

Γss
12 − 2Γsd

12 + Γdd
12 = 1.17z̄2 − 59.5z̄3 + . . .

+ δ(3.7392− 16.5692z̄ − 40.276z̄2 + . . . ) ,
(3.4.19)

Γsd
12 − Γdd

12 = −2.76z̄ + · · ·+ δ
(
1.8696− 2.7616z̄ − 7.4906z̄2 + . . .

)
.

(3.4.20)

Equation 3.4.20 shows that our duality violating model completely lifts the GIM
cancellation and that even tiny values of δ will lead to an overall result that is much
bigger than the usual SM predictions within the inclusive approach. For our final
conclusions we will use the generalised duality violating model

Γss
12 → Γss

12(1 + δss) , (3.4.21)
Γsd

12 → Γsd
12(1 + δsd) , (3.4.22)

Γdd
12 → Γdd

12(1 + δdd) , (3.4.23)

with δss ≥ δsd ≥ δdd. Next we test for what values of δ the inclusive approach can
reproduce the experimental results for ∆ΓD. The corresponding allowed regions for
δss,sd,dd are given as shaded areas in Figure 3.6. As expected, very small values of
δ cannot give an agreement between HQE and experiment, however surprisingly
values as low as δss ≈ 0.18 can explain the current difference. So a duality violation
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Figure 3.6: Limits on δss, δsd and δdd for the D system from a com-
parison of the experimentally allowed region of ∆ΓD

with the theory prediction based on the HQE. The al-
lowed regions for the δs are shaded. Depending on the
values of δdd, different colours are used. As expected,
for small values of δ the experimental value of ∆ΓD

can not be reproduced and thus the area in the centre
is free. Starting from values of about 20 % on duality
violation can explain the difference between experiment
and HQE. To see more precisely where the smallest pos-
sible value of δ lies, we have zoomed into the overlap
region.
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of the order of 20 % in the HQE for the charm system is sufficient to explain the
huge discrepancy between a naive application of the HQE and the measured value
for ∆ΓD.

3.5 Summary

In this chapter we have explored the possibility of duality violations in heavy meson
decays. Since the direct measurement of ∆Γs in 2012 by the LHCb collaboration huge
duality violating effects are excluded [206], but there is still space for duality violating
effects of the order of 20 %. Because of the constantly improving experimental
precision in flavour physics it is crucial to consider corrections of the order of 20 %
and to investigate whether, and how, such a bound can be improved.

To do so, we introduced in Equations 3.2.10 to 3.2.12 a simple parameterisation of
duality violating effects, that relies solely on phase space arguments: the smaller
the remaining phase space is in a heavy hadron decay, the larger duality violations
might be. In such a model, decay rate differences depend moderately on the duality
violating parameter δ, whereas semi-leptonic asymmetries have a strong δ depen-
dence, as can be seen from our results in Table 3.3. Currently we get the strongest
bound on δ from Equation 3.2.4(

∆Γs

∆Ms

)exp

(
∆Γs

∆Ms

)SM = 0.96± 0.22⇒ |δ| ≲ 0.1. (3.5.1)

If there were agreement to a similar precision between experiment and theory for
the semileptonic asymmetries then the bound on δ would go down to ±0.01. Unfor-
tunately, the semileptonic asymmetries have not yet been observed – we have only
experimental bounds.

The same is true for the decay rate difference ∆Γd, and so we used our bounds on
δ from ∆Γs to determine the maximal possible size of aq

sl and ∆Γd, if duality is
violated. These regions are compared with current experimental ranges in Figure 3.3.
Any measurement outside the region allowed by duality violation is a clear signal
for new physics. We also show a future scenario in which the duality violation is
further constrained by more precise values of ∆Γs both in experiment and theory.

We have shown that the duality violating parameter δ will also affect the lifetime
ratio τ(Bs)/τ(Bd), where at the time of writing there was a deviation of about 2.5σ
between experiment and theory. Looking at the historical development of this ratio
as depicted in Figure 3.1, one might be tempted to assume a statistical fluctuation
in the data (see also Table 2.1 as well as our new calculation in Chapter 6 and the
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updated experimental value quoted there). Taking that deviation seriously however,
it is either a hint for new physics or for a sizeable duality violations of the order
of δ ∼ 0.5, which is inconsistent with our bounds on δ derived from ∆Γs. Here a
future reduction of the experimental error of τ(Bs)/τ(Bd) will give us valuable insight
into the correct answer. We have studied two future scenarios in Figure 3.5, which
would either point towards new physics and duality violations or stronger bounds on
duality violation. It is very important to note that the theory prediction has a very
strong dependence on almost unknown lattice parameters. In particular, we can see
from our error budget for the lifetime ratio in Table D.1 that any new calculation
of the bag parameters ϵ1,2 would bring large improvements in the theory prediction
for τ(Bs)/τ(Bd). We make a new calculation in Chapter 6, but our overall error is
worse than in this chapter, due to larger uncertainties than the old lattice results for
these colour suppressed operators.

As we have mentioned several times, improvements in both experiment and theory
for mixing observables and in particular for ∆Γs would be extremely helpful in this
area. Therefore we presented an update of the SM predictions for the observables
∆Γ, ∆M , and asl in both the Bs and Bd systems, based on the recent Fermilab-MILC
lattice results [217] for non-perturbative matrix elements, CKM parameters from
CKMfitter [219], and an aggressive error estimate on the unknown bag parameters
of dimension-seven operators. With this input the current theory error in the
mixing observables could be reduced by a half for ∆Ms or a third for ∆Md, ∆Γs

and ∆Γs/∆Ms. In our aggressive scenario, we get for our fundamental relation to
establish the possible size of duality violation(

∆Γs

∆Ms

)exp

(
∆Γs

∆Ms

)SM (agr.) = 0.95± 0.14 . (3.5.2)

As expected, the overall uncertainty drops considerably, with a theory uncertainty
that comes close to the experimental one – if this can be realised more precision in
the experimental values of ∆Γs would be most helpful. Along with this improvement
in precision, we found in this new analysis that the central values of the mass
differences and decay rate differences are enhanced to values of about 20 % above
the measurements with a significance of around 2 standard deviations. To find out
whether this enhancement is real, we need several ingredients: 1) an independent
confirmation of the larger values of the matrix element ⟨O1⟩ found by [217]. (See
Chapter 6 for our sum rule calculation, and Appendix H.3 for how that result
combined with a sum rule decay constant result affects the mass difference central
value). 2) a first principle calculation of ⟨R2,3⟩ – triggered by the results of [217] we
simply assumed small deviations from vacuum saturation approximation. If the new
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central values turn out to be correct, there will be profound implications for new
physics effects and duality violation in the B system. For a further improvement of
the theory uncertainties beyond what we have considered, NNLO QCD corrections
for mixing have to be calculated.

We finally focussed on the charm system, where a naive application of the HQE gives
results that are several orders of magnitude below the experimental values. We found
the unexpected result that duality violating effects as low as 20 % could solve this
discrepancy. Such a result might have profound consequences on the applicability of
the HQE. As a decisive test we suggest a lattice calculation of the matrix elements
arising in the ratio of charm lifetimes – this ratio is free of any GIM cancellation,
which are very severe in mixing, and so allows us to separate the reliability of the
underlying HQE from numerical cancellations.



Chapter 4

Charming Dark Matter

4.1 Introduction

As discussed in Section 1.3.1, dark matter has a long history, but the interactions of
DM (outside of its gravitational influence) remain elusive, despite concerted efforts.
These range from attempts to measure its scattering in terrestrial targets (known as
direct detection), its annihilation or decay products in the galaxy or beyond (indirect
detection), or through its direct production in colliders (collider searches). A brief
history and overview of direct detection (DD) and indirect detection (ID) can be
found in [55] and [234].

One property of DM that is known to high precision is its abundance in the Universe
today. The evolution of the structure of the Universe is well modelled [235] and
so the starting point for building a model of a particle DM is to consider how its
interactions influence its relic abundance. This leads to the concept of a thermal
WIMP, in which the DM achieves its relic abundance by decoupling from thermal
equilibrium due to its annihilations or decay into SM particles.

Under the assumption of a WIMP particle interpretation of DM, we have no concrete
indications of its mass, spin or interactions, which leaves tremendous freedom when
building models. Although many concrete models, e.g. supersymmetric theories,
predict the existence of a DM candidate, so far these theories remain unverified
and the phenomenology is often complicated by the large parameter spaces. This
represents a top-down approach in which DM arises naturally from a UV complete
model.

An alternative approach to DM model building is from the bottom up, where a class
of simple low energy models or interactions are considered simultaneously. With no
theoretical guiding principle, except Lorentz symmetry, on which to build such mod-
els, one must consider all possible models within a framework of a few assumptions.
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This is most easily done using a set of EFT (see Section 2.1) operators. Although
an EFT may be perfectly valid for low energy experiments such as direct or indirect
detection, they face problems with collider searches where the EFT approximation
breaks down when heavy (O (TeV)) states become energetically accessible.

To ensure the model is valid up to high energies (or at least above the reach of
colliders) a commonly used tool is simplified models, where often the mediator
between the dark sector and the SM is included as a propagating mode. Simplified
models arose first in the context of collider searches for missing energy [236–242], but
have recently been applied more widely to indirect and direct detection [236,243,244],
they allow for a much more broad study since the models themselves are sufficiently
simple to contain only a few parameters which dominate the phenomenology of the
DM. This approach is not without criticism, and can at times be too simple, for
example neglecting gauge symmetries and perturbative unitarity [245–247].

Given the remarkable agreement between the SM and experimentally measured
flavour observables it is natural for NP models to enforce the MFV assumption to
suppress large NP effects [25,26]. This assumption limits any quark flavour breaking
terms to be at most proportional to the Yukawa couplings, which are responsible for
the small violation of the flavour symmetry in the SM. This suppresses FCNCs and
avoids strong constraints from rare decays and neutral meson mixing. Nonetheless,
some such observables are not reproduced by SM calculations and hence allow room
for violations of MFV, for example D0 mixing which we discuss in Section 4.3.1.

Some recent studies of simplified models have begun to go beyond the MFV as-
sumptions. This has been done in the context of down type couplings [248], leptonic
couplings [249], and more recently top-like [250], or top and charm-like couplings [251].
Such models allow a continuous change from the MFV assumption to strong MFV
breaking and can quantify the degree of MFV breaking permitted by the flavour
constraints. Similar scenarios have been studied in [252], taking an overview of both
lepton and quark flavoured DM and as well as a more focused study on top DM [253],
both in the MFV limit.

In this chapter, we extend the work of [250], taking a more general approach to these
kinds of beyond MFV models – by placing fewer restrictions on the parameters of
the model we include models with dominant up and charm type couplings, which
give non-trivially different exclusion regions for different flavours of DM. We note
that a similar scenario, except with scalar dark matter and a fermionic mediator has
been studied in [254]. We aim to present statistically robust bounds from the entire
parameter space based on a Markov Chain Monte Carlo (MCMC) approach.

We consider the following constraints in detail:
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• Relic Density (Section 4.2): We calculate the relic density of all three DM
particles, including their widths and important coannihilation effects.

• Flavour Bounds (Section 4.3): We provide bounds on the model from neutral
charm meson mixing, ensuring that the new physics does not exceed the 1σ
upper bound of the experimental measurement of the mass difference between
the heavy and light state of the D0 . We assess the possibility for constraints on
rare decays like D+ → π+ℓℓ but find that the NP is relatively unconstrained
compared to mixing.

• Direct Detection (Section 4.4): We calculate the event rate for the most exclud-
ing DD experiments (LUX and CDMSlite) over a large range of DM masses,
including all relevant contributions up to one loop order (including gluon, pho-
ton, Z and Higgs exchange) and matching to a full set of non-relativistic form
factors.

• Indirect Detection (Section 4.5): We include a large collection of constraints
from the literature on the thermally averaged annihilation cross section ⟨σv⟩
for annihilation into various search targets such as photons, electrons, and
protons. We also include a study of gamma ray line searches, generated at the
one-loop level in our model.

• Collider Searches (Section 4.6): We perform a robust simulation of the dom-
inant signals for a series of monojet, dijet and stop searches for ATLAS and
CMS, including the widths of the particles.

We also compute constraints coming from electroweak precision observables, and
perturbative unitarity. We calculate the Peskin-Takeuchi parameters [255, 256] as
these characterise the NP effects in much of the parameter space of our model, and
replicate the literature result for a charged singlet scalar [257]. We find that the
S, T, U parameters provide no additional constraints beyond those previously de-
scribed, and similarly perturbative unitarity calculations prove to be unconstraining
and so we make no further mention of them.

Including the various constraints named above we can carry out an MCMC scan in
order to identify the parameter space left open to the model – our results are collected
in Section 4.7. We find that current data can be used to restrict the parameter space
where DM of this kind can exist, and go beyond the results of [250] by showing
how renormalisation group mixing and running can dramatically improve the direct
detection constraints, disfavouring attempts to avoid these limits by predominantly
coupling to top quarks.
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U(3)uR
U(3)χ U(3)c U(1)EM

uR 3 1 3 2/3
χ 1 3 1 0
ϕ 1 1 3 2/3

λ 3 3̄ 1 0

Table 4.1: The representation for the relevant symmetries of the
particles introduced in the DMFV model, along with the
coupling matrix λ and the SM right-handed quarks.

4.1.1 The DMFV Model

The SM (without Yukawa couplings) has a flavour symmetry amongst the quarks –
there are no flavour violating effects such as FCNCs at tree level. Minimal Flavour
Violation (MFV) is then the statement that the only flavour symmetry breaking
terms in the BSM model are the Yukawa terms [26].

In the model of Dark Minimal Flavour Violation (DMFV) originally proposed in [248],
the SM quark flavour symmetry is increased by the inclusion of a U(3) symmetry in
the dark sector,

Sflavour = U(3)QL
× U(3)uR

× U(3)dR
× U(3)χ , (4.1.1)

and the DMFV hypothesis is that this enlarged flavour symmetry is broken only by
terms involving the quark Yukawas and a new coupling matrix λ. In the original
work [248] λ coupled the DM to right-handed down type quarks, whereas in this
work we couple the DM to right-handed up type quarks (the choice of right-handed
quarks avoids having to introduce any non-trivial SU(2) structure). In this model,
we introduce four new particles – a scalar ϕ that is colour and electrically charged,
and a flavour triplet χi that is a singlet under the SM gauge groups (which allows it
to have a standard Dirac mass term). In Table 4.1 we detail the behaviour of the new
particles and the coupling matrix under various symmetry groups (and their electric
charge) – the idea of λ “transforming” under the U(3) flavour symmetries is to be
understood by considering λ as a spurion field [26]. The new physics Lagrangian
reads

LNP = χ̄(i/∂ −mχ)χ+Dµϕ(Dµϕ)† −mϕϕ
†ϕ− (λijuR,iχjϕ+ h.c.) , (4.1.2)

giving the vertices shown in Figure 4.1. Note that a coupling between the mediator
and the Higgs as well as a mediator self-coupling are allowed by the symmetries of
the model, but we neglect them in this work. It was shown in [248] that coupling
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φ

χ̄j

qi

∼ iλijPL φ∗

χj

q̄i

∼ iλ∗
ijPR

Figure 4.1: Feynman rules for the interaction in Equation 4.1.2.

matrix can be written in the form

λ = UλDλ (4.1.3)

with the matrices Dλ and Uλ parameterised as (defining cij ≡ cos θij, sij ≡ sin θij)

Uλ =


c12c13 s12c13e

−iδ12 s13e
−iδ13

−s12c23e
iδ12 − c12s23s13e

i(δ13−δ23) c12c23 − s12s23s13e
i(δ13−δ12−δ23) s23c13e

−iδ23

s12s23e
i(δ12+δ23) − c12c23s13e

iδ13 −c12s23e
iδ23 − s12c23s13e

i(δ13−δ12) c23c13

 ,

(4.1.4)

Dλ =


D11 0 0
0 D22 0
0 0 D33

 ,

where θij ∈ [0, π/4] to avoid double counting the parameter space, and we require
Dii < 4π for a perturbative theory.

The presence of complex couplings (δij ̸= 0) creates a violation of CP symmetry (note
this is also permissible in the MFV assumption, so long as the complex phases are
flavour-blind [258]). Due to the stringent constraints from electric dipole moments
(EDM) in the presence of CP violation [26] we will set δij = 0 throughout. In total
we then have a 10 dimensional parameter space:

{mχ,1,mχ,2,mχ,3,mϕ, θ12, θ13, θ23, D11, D22, D33} . (4.1.5)

Other than those mentioned above, the only other limit we place on our parameters
is mχ,mϕ ≳ 1 GeV, so that the DM is a conventional WIMP candidate and the
mediator is sufficiently heavy to decay to at least the up and charm quarks.

Although the masses of the DM fields and mediator field are in principle arbitrary
free parameters, one must impose mχ,min < mϕ + mq (where mq is the lightest
quark to which mχ,min couples) to ensure χ cannot decay. Similarly we must have
mϕ > mχ,min +mq, which ensures the mediator has at least one decay channel and
prevents it obtaining a relic abundance itself.
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It can be shown additionally that a residual Z3 symmetry exists in the model
[248,259], which prevents either χ or ϕ decaying into purely SM particles. This useful
symmetry argument ensures the relic DM (the lightest of the three) is completely
stable even once non-renormalisable effects are considered. It is possible for the
heavier χ fields to decay to the lightest χ (DM) – in fact the rate of such decays are
always large enough to totally erase the relic density of the heaviest two DM.

Finally we briefly mention some interesting behaviour of the widths of our new
particles. First, the mediator width Γϕ can be shown to be very narrow, with
Γϕ/mϕ ≤ 9

128π
≲ 1 % even in the limit of non-perturbative couplings. Secondly, for

small mass splittings (mχi
= mχj

(1 + ϵ)) the decay rate χi → χj + qq scales as
ϵ5, which is important when we consider the relic abundance of the different DM
species.

4.2 Relic Density

4.2.1 Relic Density with coannihilations

As mentioned in the introduction, the relic density (RD) of DM is currently measured
to a very high accuracy by the Planck collaboration [53], and reproducing this is a
must for any DM model.

In our model with three possible DM candidates, with potentially almost degenerate
masses, we follow the results of [260] – Section III in particular deals with the effects
of coannihilations (processes with χiχj → SM, i ̸= j). In that work, the authors
describe how coannihilations can be very important, and can be included in the
“standard” computation [261–263] of relic density through the use of an effective
annihilation cross-section ⟨σv⟩eff, defined in eq. (12) of [260]. We will not reproduce
all the detail from that paper here, but summarise the key results.

To compute the relic density, one first finds the freeze-out temperature xf ≡ m/Tf

by solving the equation

exf =
√

45
8
geffmχMpl ⟨σv⟩eff

2π3g1/2
∗ x

1/2
f

, (4.2.1)

with geff an effective number of degrees of freedom of the near-degenerate DM
candidates, Mpl the Planck mass, g∗ the total number of relativistic degrees of
freedom at freeze-out. The relic density itself can then be written

Ωh2 = 2× 1.04× 109 xf√
g∗Mpl

(
aiiIa + 3biiIb/xf

) , (4.2.2)
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where aii and bii are the s-wave and p-wave terms of ⟨σv⟩ii (the cross section for the
relic, plus any particles with degenerate mass), and Ia,b are temperature integrals.

These results are found through certain simplifications of the full Boltzmann equa-
tions, and follow the full numerical calculation very closely.

4.2.2 The Generation of Mass Splitting

Almost degenerate DM masses mean the mass splittings (∆m = mχi
−mχj

) between
the different χi are important to determining the true value of the DM relic density.

We can follow two regimes which distinguish the various possibilities by the dominant
effect on the signals they generate:

1. The mass splitting is non-zero, the lightest of the χi survives as the relic. This
holds as long as the splitting is large enough to accommodate any kind of
decay.

2. The masses are truly degenerate, equivalent to a degeneracy which is suffi-
ciently small to prevent decay, i.e. ∆m ≤ 4 MeV. In this case, the three DM
particles obtain equal relic abundances, with the total affected primarily by
their coannihilations.

The difference between the effective cross-section method mentioned above and a full
solution of the coupled Boltzmann equations, and the effect of degenerate masses
is shown on the left of Figure 4.2. We see that the effective cross section approach
correctly reproduces the relic density of the lightest candidate at late times, and
that relic density constraints are not hugely sensitive to the mass splitting if it is
non-zero.

As the final relic density depends sensitively on whether a mass splitting in the
candidates exists or not, we briefly talk about how such a splitting can arise. Split-
tings can arise from two sources – a tree-level contribution where mχi

and mχj
are

split by mass terms of the form O (1) × (λ†λ)ii, or a loop-level contribution from
renormalisation where the coefficient is instead of the order Nc/(16π2) log(µ2/Λ2)
multiplied by the tree-level couplings (λ†λ)ii with Λ some high scale at which the
masses are universal, and µ a low scale at which we wish to use the mass (e.g. for
direct detection this could well be the nuclear scale of around 1 GeV). Explicitly,
the resulting shift in the DM mass will be given by

mχi
(µ) = mχ(Λ)

(
1 + Nc

16π2 (λ†λ)ii log
(

Λ
µ

)
+O

(
(λ†λ)2

ii

))
. (4.2.3)
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Figure 4.2: Illustration of relic density over time (x = mχ/T ) as
freeze out occurs (left), and the RD bounds with mass
splitting calculated with the effective method mentioned
in the main text (hatched regions for which the DMFV
models allows the correct relic abundance) (right).

Note that because of our parameterisation of the coupling matrix, λ†λ is diagonal,
with elements D2

ii

Relatively large splittings can be generated this way – with a high scale of 100 TeV,
then the coefficient of (λλ†)ii can be as large as ∼ 0.35. We explore the effect of
mass splitting in our work by manually setting the mass splitting (∆m/mχ) to a
large (15 %) and small (2 %) value.

4.3 Flavour Constraints

4.3.1 Mixing Observables

Since our model introduces couplings to the up type quarks, we would expect new
physics effects in the charm meson sector – in particular in neutral D0 mesons.
For the case of D mesons mixing, the current experimental averages from HFLAV
are [264]

x ≡ ∆M
Γ = (0.32± 0.14) % ,

y ≡ ∆Γ
2Γ = (0.69+0.06

−0.07)% .

(4.3.1)

On the theory side however, things are not so well developed, a point which we
discussed in Section 3.4. To summarise that discussion, in the exclusive approach
values of x and y on the order of 1 % are believed to be possible, while for the
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inclusive calculation huge GIM and CKM suppression leads to a prediction that is
orders of magnitudes below the experimental values. We then showed that a small
breakdown (O (20 %)) of quark-hadron duality could enhance the predicted value of
y up to its experimental value. Because of these difficulties we have some freedom
in the treatment of the SM contributions to ∆M and ∆Γ when constraining the
allowed BSM contribution by comparison to experiment. One possibility [265] is to
require that

xNP = 2|MNP
12 |

ΓD
≤ xexp, upper limit , (4.3.2)

taking the 1σ upper limit reported by HFLAV (Equation 4.3.1). This is the limit
that would be derived if the NP and SM contributions have roughly the same phase,
so that

|MNP
12 +MSM

12 | = |MNP
12 |+ |MSM

12 | , (4.3.3)

since ∆M ≤ 2|M12|. Our NP contribution to M12 is given by

MNP
12 = −f

2
DBDMD

384m2
ϕπ

2

3∑
i,j=1

F

m2
χi

m2
ϕ

,
m2

χj

m2
ϕ

λ1iλ1jλ
∗
2iλ

∗
2j (4.3.4)

where we take the decay constant fD from FLAG [161,266,267], the D mixing bag
parameter BD from [268], and the loop function F is given by

F (xi, xj) = 1
(1− xi)(1− xj)

+ x2
i log xi

(xi − xj)(1− xi)2 −
x2

j log xj

(xi − xj)(1− xj)2 .

The important result is that M12 ∝ ((λλ†)12)2 for degenerate DM masses. The
matrix (λλ†) is diagonal if Dii are all equal, or if θij = 0 (no mixing between quark
flavours) and then the flavour constraints disappear.

Using the upper 1σ value of the experimentally measured xD leads to bounds as
shown on the left of Figure 4.3, these bounds can be very strong and significantly
exclude almost all masses m ≲ 1 TeV for large couplings λ ≳ 0.1 unless one fine-tunes
the model to remove (λλ†)12.

4.3.2 Rare Decays

We consider the semileptonic decay D+ → π+µ+µ−, whose short distance contribu-
tion comes from the quark level decay c → uµ+µ−. This decay is loop and GIM
suppressed in the SM, and so should have good sensitivity to new physics. In our
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Figure 4.3: Excluded regions (hatched) for which the value of ∆M
from DMFV diagrams exceeds the +1σ contour of the
experimental result (left). The bounds are the most
constraining possible given the limits on Dii, and can
be made arbitrarily small by adjusting the values (for
example with equal values Dii = D). The exclusions
from |C ′

9| < 1.3 varying (λλ†)12 (right).

model contributions are no longer GIM suppressed, coming from electroweak penguin
diagrams with our new particles in the loop.

In [269] rare charm decays are examined to provide limits on the Wilson coefficients
of an effective theory – they look at D → µ+µ− as well as D+ → π+µ+µ− and
find the latter to place the strongest bounds for the coefficients relevant in our
model. Matching onto their EFT, and neglecting the Z penguin since the momentum
transfer is small, we find only the C ′

7, C
′
9 coefficients are non-zero, corresponding to

the operators

Q′
7 = emc

16π2 (uσµνPLc)F µν , Q′
9 = e2

16π2 (uγµPRc)(ℓγµℓ) , (4.3.5)

(our full expressions for the Wilson coefficients can be found in Appendix E.1).

Since the SM branching ratios for the D0 decay suffer from a strong GIM cancellation,
we would expect strong constraints on the flavour breaking terms of the DMFV model.
As with the mixing observables, the rare decay process is primarily sensitive to (λλ†)12

in the limit of degenerate DM mass. On the right of Figure 4.3 we show the bounds
coming from limits on the Wilson coefficients for (λλ†)12 = 1, 2 and 4. The bounds
on the individual Wilson coefficients are |Ci| ∼ 1 (see Table II of [269]). Mediators
up to mϕ ∼ 50 GeV can be ruled out for couplings Dii ∼ (λλ†)12 ∼ O (1). These
constraints are therefore substantially weaker than from meson mixing observables.

The rare flavour-changing decays t → u/cγ have been measured by ATLAS [270],
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but we find that the current limits are again not constraining on our model.

4.4 Direct Detection Constraints

Direct detection experiments are one of the most powerful ways of searching for DM,
and operate by searching for DM scattering from atomic nuclei. The calculation of
the scattering rate is done via an effective theory, where all heavy degrees of freedom
(save the DM) have been integrated out, and then amplitudes are matched onto four
fermion operators.

We choose to examine data from LUX [271,272] and CDMSlite [273], which together
(at the time of this work) provided the best constraints over the range of DM masses
we are looking at. LUX uses liquid xenon as a target, which detects DM with
masses above 5 GeV while scattering from DM masses below this is kinematically
impossible; CDMSlite is a germanium detector, and best constrains particles with
masses between 1.6 GeV and 5.5 GeV. Details of our exact method can be found in
Appendix E.2 – here we merely state that we use a Poisson probability distribution
for both, comparing the number of observed events in each bin to our predicted
signal plus background.

At tree level, the only EFT operator which arises from our model is given by a
diagram with t-channel ϕ exchange. We only consider the scattering amplitudes
in which the incoming and outgoing DM (and quark) are the same flavour, as this
avoids the computation of (possibly unknown) hadronic matrix elements of quark
currents q iΓqj for i ̸= j. The operator in question is

LEFT = Cij(χ̄i
Lγ

µχi
L)(q j

Rγµqj
R) , Cij(µ ∼ mϕ) = λjiλ

∗
ji

2((mχ −mq)2 −m2
ϕ)

(4.4.1)

where the Mandelstam variable t has been replaced by its low velocity expansion
and we have performed a Fierz transform (see Appendix A).

Vector and axial-vector currents probe the valence quark content and spin distri-
bution respectively of the scattered nucleon, and so would naively be small for
non-valence quarks (i.e. c and t). However, there are 1-loop diagrams (see Fig-
ure 4.4) that mix operators with heavy quarks into those with up and down quarks,
and in the case of heavy mediators RG running down to the direct detection scale
(µ ∼ 1 GeV) also alters the relative coupling to nuclei. This calculation has been
done in [274,275], and we find (see Figure 4.5) that DM that couples to heavy quarks
at the mediator scale will mix into up quark coupling at the low scale with up to
10 % of its high scale coupling strength; tree-level scattering is therefore substantial
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(as can be seen in Figure 4.6), even in the case of only coupling to heavy quarks.
The spin-averaged cross section is parameterised by a series of nuclear form factors
F

(N,N
′)

ij [276], which are functions of the incident DM velocity squared v2 and the
momentum transfer q2,

⟨|M|2⟩ ∼
∑

i,j,N,N
′
C

(N)
i C

(N ′)
j F

(N,N
′)

ij (v2, q2) (4.4.2)

where we sum over the form factors and the nucleons N,N ′ = p, n. The nucleon
coefficients above are related to our Wilson coefficients by

C
(p),i
1 (µ ∼ 1 GeV) = 4mimN

∑
j

(2Rju +Rjd)Cij(mϕ) (4.4.3)

C
(n),i
1 (µ ∼ 1 GeV) = 4mimN

∑
j

(2Rjd +Rju)Cij(mϕ) (4.4.4)

where Rju (Rjd) gives the magnitude of the running of operator q j
Rγ

µqj
R onto uγµu

(dγµd), and we have quoted the i = j = 1 relation since the corresponding form
factor has the dominant scaling behaviour. i and j run over the DM and quark
flavours respectively. The dependence of the Rjq parameters on the high scale (which
we take to be the mediator mass) is shown in Figure 4.5.

At loop-level, there are various new operators that arise – in general these are highly
suppressed, but we include them both because they can become dominant in particu-
lar regions of parameter space (see Figure 4.7) and for completeness. The operators
we consider are photon operators [277,278] (which in the non-relativistic limit cor-
respond to the charge-radius, magnetic dipole moment, and anapole moment); Z
penguins [277]; and those for DM-gluon [279–281] scattering. We reproduced the
quoted literature results as a check.

The more recent null results from XENON1T [282] and PandaX-II [283] push the
constraining potential of direct detection even further – nearly an order of magnitude
stronger in cross-section, which translates into a factor of ∼ 2 in mediator mass.

4.5 Indirect Detection Constraints

4.5.1 Basics of Indirect Detection

Indirect detection experiments looks for signs of annihilating and/or decaying DM
coming from astrophysical sources, such as the centre of galaxies where DM density
is largest. The constraints are based around limits on the annihilation cross-section
of DM to SM particles – in our model the main limits come from annihilation to
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Figure 4.7: The differential scattering rate in recoil energy for DM-
nuclear scattering at LUX. Each of the quark contribu-
tion are plotted separately, the rates are also separated
according to the way in which they scatter. The right
plot represents a model with almost complete degen-
eracy between the DM and mediator mass, where the
loop level interactions become important.

quark pairs

⟨σv⟩χ̄iχj→q lqm
≈ Ncm

2
χ

32π(m2
χ +m2

ϕ)2

(
λmjλ

∗
li

)2
+O

(
v2
)
. (4.5.1)

There is a bounty of possible search avenues for this annihilation signal; the energetic
quarks will hadronise and decay into stable particles (photons, electrons, protons,
and their anti-particles, which make up some part of the measured cosmic ray flux),
which can be measured directly as they arrive at the earth (in the case of photons
especially, which suffer very little energy loss to galactic or inter-galactic material),
or indirectly through their influence on cosmic rays (for example photons produced
by electrons/protons diffusing through the galaxy). We also have great freedom in
where to look; generally anywhere where there is a cosmic overdensity of dark matter
– close to home in the galactic centre or further afield in dwarf spheroidal (dSph)
galaxies, galaxy clusters or the CMB.

Underlying all these is Equation 4.5.1 and so ID constraints are frequently quoted
as confidence limits on the thermally averaged annihilation cross section ⟨σv⟩f f into
fermions of the same flavour, covering a mass range in mχ from 1 GeV to 100 TeV.
The ID signals from heavy quarks (q = c, b, t) are very similar (see Fig. 3 and 4
in [284]), and it is uncommon to find constraints on c, t final states (more common
is the b). The primary spectra of electrons, positrons, anti-protons, deuteron and
neutrinos are extremely similar between c, b, t quarks, and thus any constraints
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Figure 4.8: The constraints on ⟨σv⟩qq for q = u, d, s (left) and q = b
(right) which is representative of q = c, t for mχ > mc,t.
The constraints are taken from many different sources
(DSph, galactic centre, clusters) and targets (gamma
rays, radio waves, positron, anti-protons).

which look for these particles from DM annihilations will be approximately heavy-
flavour independent. The situation is depicted in Figure 4.8.

It should be noted that the relative strength of these constraints is not robust;
different authors use different halo profiles, different astrophysical parameters and
are subject to varying degrees of uncertainty, some significantly larger than others,
it is beyond the scope of this work to accommodate all these effects and compare
constraints on a like-for-like basis and so what we present should be taken as represen-
tative but not precise. We will use the bb final state as representative for constraints
based on dSph [285] and anti-proton measurements of AMS-02 [286] which dominate
other constraints such as those based on other particle targets, such as the positron
fraction [287] or neutrinos [288] and also those based on the galactic centre [289], or
galaxy clusters [290].

4.5.2 Gamma rays (and other mono-chromatic lines)

At the one-loop level, the pair production of quarks from annihilating DM can pair
produce photons at a fixed energy Eγ = mχ/2 via a box diagram. We calculate this
cross-section using an EFT where the mediator has been integrated out, in which
limit only the axial vector operator (χ̄γµγ5χ)(qγµγ

5q) contributes to the s-wave
annihilation, with cross section

⟨σv⟩γγ = 16α2s

9468(m2
χ −m2

ϕ)2π4

(
1 + 2m2

fC0

)2
, (4.5.2)
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Figure 4.9: The ID constraints on DMFV model, with ‘maximal’
mixing θij = π/4 (left), or for couplings to top quarks
only (right), assuming degenerate DM masses. Bounds
are produced on individual final states, and therefore
scale with the dominant annihilation channel, somewhat
surprisingly the top quark channel gives stronger con-
straints due to the extremely sensitive γ-ray search by
H.E.S.S [289].

where s ≈ 2m2
χ is the centre of mass energy of the annihilating DM, and C0 is the

scalar integral C0(0, 0, s;m2
f ,m

2
f ,m

2
f ) in LoopTools notation [291].

As well as γγ final states, there will be γX final states where X = Z, h for example
and these also provide constraints. The presence of a massive particle recoiling
against the photon shifts the energy to Eγ = mχ(1−m2

X/4m2
χ), but still creates a

mono-energetic line signature. We show some results from the indirect searches in
Figure 4.9 – we see that indirect searches can be quite powerful, especially in the
case of large coupling to top quarks.

4.6 Collider Constraints

Our DMFV model contains a new particle with colour charge, and so we expect there
to be significant limits coming from collider experiments. In addition we also have
DM which can be searched for in final states with missing energy, and current LHC
data can also place limits on the mass of invisible particles. In the past, DM model
builders have used effective field theories (EFTs) to analyse NP at colliders, but in
recent years it has become clear that the regions of validity of these EFTs at high
energy machines such as the LHC are so small as to be almost useless [236,243,244].
We briefly detail in the next section this point for our particular model, before
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Figure 4.10: The EFT approximation breaks down beneath the
dashed lines (which are the RΛ = 0.5 contours with
g ≲ 4π), while ATLAS excludes below the solid lines,
and so only the shaded regions can robustly be ex-
cluded using the EFT.

moving on to a more complete analysis.

4.6.1 EFT Limit

In [292] the validity of the EFT approximation for t-channel mediators is quantified
by RΛ, which they define as the ratio of the cross section with the constraint t < Λ2

applied to the total cross section (i.e. the total proportion of the cross section which
is valid under the EFT assumption). The lines of RΛ = 0.50 are plotted alongside the
EFT limits taken from ATLAS [293] (the RΛ contour assumes |η| < 2 and pT < 2 TeV,
the ATLAS results assumed the same range of η, but allow pT ≲ 1.2 TeV). It is
worth noting that the authors of [292] produce results with the limit g ≲ 1, the
bounds become significantly weaker by using g ≲ 4π which then permit a small
region of validity as shown in Figure 4.10. The EFT breaks down entirely for g ≲ 1.
Thus the EFT approximation cannot be justified in our analysis and we turn to the
simulation of the full cross section.

4.6.2 LHC bounds

To try and cover a large range of constraints, we look at three different LHC processes
that could place limits on our model – monojet with missing energy searches, where
a single jet recoils off DM pair production; dijet searches with missing energy; and
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Figure 4.11: Example Feynman diagram for the monojet (left) and
dijet (right) processes.

stop searches. The latter are relevant to our model as we have a coloured scalar
coupling to top quarks and DM, in analogy with the e.g. stop-top-neutralino vertex
in many supersymmetric theories, and so provide sensitivity to the ϕ-t coupling D33.

In Figure 4.11 one example Feynman diagram that generates monojet and dijet
signals is shown – in the dijet case the decay of the mediator into quark plus DM is
not shown. Other diagrams that contribute can be seen in Appendix E.3.

We produce our collider constraints using MadGraph [294], replicating, except where
noted below, the experimental cuts used by the experiments.

Monojet searches

In our analysis, we use the most recent monojet search by ATLAS [295] (which uses
the Run 2 data (

√
s = 13 TeV and L = 3.2 fb−1)), along with a similar analysis

performed by CMS [296] with the Run 1 data (
√
s = 8 TeV and L = 19.7 fb−1).

The total cross section as a function of mϕ for a benchmark scenario is shown in
Figure 4.12 with the ATLAS limits overlaid, and the constraints on our model are
shown in the top of Figure 4.13.

Dijet searches

Moving on to dijet searches, we use a Run 1 and Run 2 search by ATLAS [297,298]
looking for multiple jets plus missing energy – we restricted our comparison to the
2-jet searches which should provide the strongest constraint. In our model, the
process pp → ϕϕ → χ̄χjj provides the dominant contribution to this signal.

We replicate all the main selection cuts for both analyses, in particular for the Run 1
comparison: Emiss

t > 160 GeV, pT,(1,2) > 130, 60 GeV, ∆ϕ > 0.4 (between the jets and
missing momentum), and for Run 2 similar cuts are applied (full detail in Table 2
of [298]). The different signals regions (tjl, tjm, tjt) also include a minimum
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Figure 4.12: Total cross section for the seven signal regions of the
ATLAS monojet search [295] for two DM masses.

SR Nobs NSM Nn.p. σobs / fb
tjl 12 315 13 000± 1000 15–704 60
tjm 715 760± 50 15–59 4.3
tjt 133 125± 10 22–50 1.9
tjl 263 283± 24 12–37 16
tjm 191 191± 21 15–58 15
tjt 26 23± 4 10–22 5.2

Table 4.2: Lower limits (at 95 % CL) on the visible cross section for
three signal regions (SR) in the Run 1 ATLAS dijet plus
missing ET search [297] (top), and ATLAS dijet search
from Run 2 [298] (bottom).
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Cut tN_diag tN_med tN_high tN_boost

Emiss
T / GeV 100 200 320 315

pj
T,i / GeV 60, 60, 40, 25 80, 60, 40, 25 100, 80, 40, 25 75, 65, 40, 25
mT / GeV 60 140 200 175
∆R(b, l) 0.4 0.4 0.4 0.4
∆ϕ(j1,2, p

miss
T ) 60 140 200 175

Bound σvis / fb 1.8–2.9 0.4 0.3 0.3

Table 4.3: The four relevant signal regions from [299] and the cuts
we have implemented.

requirement for meff and ET/
√
HT , which are defined as

HT = |pT,1|+ |pT,2| ,

meff = HT + ET ,

which we implement in MadGraph manually (again, see the respective papers for the
cuts in each case). The constraints this places on our model parameters are shown
in the bottom left of Figure 4.13 for the case of no mixing and strong couplings for
all DM particles.

ATLAS 2014 Stop Search

Lastly, a study by ATLAS [299] considers a set of cuts optimized for the detection
of stops – the signal consists of a lepton in the final state along with four or more
jets. There are four relevant signal regions tN_diag, tN_med, tN_high, tN_boost,
each requiring a single lepton with pl

T > 25 GeV, and cuts in Table 4.3.1

We find that the production of the ϕ pair is dominated by t-channel χ exchange and
s-channel gluons; the photon and Z mediated diagrams are neglected. We calculate
in MadGraph the cross-section for a single final state ((bb)(du) + e−), and then
multiply this by four to account for the different top quark decay options (the pT

cut means the different masses have a negligible effect). Although the cross section
is predominantly controlled by the size of D33, the light quark couplings D11, D22

have a mild affect by reducing the branching ratio ϕ → tχ̄i and hence suppressing
the cross section.

We also examined constraints from a similar ATLAS search for scharms [300] rather
than stops, searching for c-tagged jets plus missing energy in the region where the

1We do not include the cuts on the parameters amT 2 and mτ
T 2. From the published cut flows

it can be seen that the effect of these cuts is of the order 10 % and 2 % respectively (although the
former cut can have a more pronounced effect ∼ 30 % on the tN_med cut choice).
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Figure 4.13: Exclusion regions for different signal regions in the AT-
LAS (top left) and CMS (top right) monojet analyses,
ATLAS dijet searches (bottom left), and ATLAS stop
searches (bottom right).

branching ratio ϕ→ cχi is large. The limits on mϕ,χ are similar to the stop search,
and thus do not warrant further attention when compared to the dijet searches.

4.6.3 Collider Constraints within DMFV

We have now looked at three classes of analysis: monojet searches, dijet searches,
and searches optimised for a stop. Within our model we have couplings to u, c, t
(which we denote here by λu,c,t) and the relative strengths of these dictate which
signals will be dominant.

Compared to λu, the monojet and dijet processes are suppressed by pure λc (due
to the charm parton distribution function (PDF)), but generally are enhanced by
mixtures of λu,c. The coupling λt reduces the signals since they dominantly come
from s-channel ϕ resonances and thus the branching ratio to u and c jets is ∝ (D33)−2
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if λt ≫ λu,c. The stop search only becomes relevant for large λt with λt/λu,c > 1,
and increasing λu,c suppresses the signal as the branching fraction to top quarks is
reduced.

• Mostly up type: The dominant signal will come from the monojet processes
which have the least QCD suppression and which require an up quark in the
initial state. Dijet searches are also sensitive but it tends to be the monojet
which sets the better constraint.

• Mostly charm type: The monojet processes are enhanced by the presence of
charm couplings, however as the up coupling is reduced the monojet processes
become suppressed because of the charm PDF by around a factor 10–100.
The dijet processes are very similar as for u quarks but the largest contribut-
ing diagram is again suppressed by the charm PDF. Both searches provide
constraints.

• Mostly top type: The monojet signal depends primarily on λu,c, only indi-
rectly on λt though the widths. λt can be probed through stop searches with
jet multiplicities of ≥ 4.

Colliders provide very powerful exclusions (up to the TeV scale in mediator mass),
and cover the full model parameter space in coupling, although these can be sig-
nificantly weakened by, for example, strong top couplings. The DM is produced
on shell, and so the constraints are comparatively weak at high DM mass when
compared with searches which depend on the cosmic abundance of DM; on the other
hand the fact that the DM is produced in the collider releases any dependence on its
abundance in the universe, thus allowing more powerful constraints on DM which
has only a fraction of the full relic abundance (or none at all). Similarly, low mass
DM is strongly excluded, whereas the most powerful astrophysical probe (direct
detection) cannot detect much below the GeV scale due to kinematics.

When compared with the strongest direct detection limits, the collider limits are
not as constraining, and this is not likely to change even with more luminosity and
higher energy beams.

It is very difficult for a given parameter choice to determine the strongest bound
from colliders, except in the extreme cases above, and one should therefore check
all available searches as we have done. Due to the interplay between 1 and 2 jet
processes, there is no obvious scaling behaviour of the cross section with the coupling
parameters, these factors make implementing collider searches in an MCMC scan
difficult and slow as each cross section must be numerically computed at each point
in phase space.
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Parameter Range Prior
mχ / GeV 1–105 Log-Uniform
mϕ / GeV 1–105 Log-Uniform
θij 0–π

4 Uniform
Dii 10−2–4π Log-Uniform

Table 4.4: Allowed ranges for the parameters used in the MCMC
scan, along with the assumed prior likelihood, which is
uniform on either a linear or logarithmic scale.

4.7 Results

We have aimed to produce a robust statistical analysis of the eight dimensional
parameter space of the DMFV model, using the Bayesian inference tool Multi-
Nest [301–303] and its Python interface PyMultiNest [304] with 5000 live points.
The motivation for carrying out this analysis is twofold, firstly from a practical stand-
point it enables very quick and efficient algorithms for scanning a large dimensional
parameter space, allowing us to include all parameters in one analysis. Secondly, a
rudimentary “hit-or-miss” analysis leaves a large region of parameter space allowed,
which is not surprising given the flexibility of 8 free parameters, with a statistical
result we can quantify the regions of parameter space which are allowed but very
improbable given the errors of the experimental data. For clarity, we represent the
allowed parameters as contours containing credible regions, using the method of [305];
using the posterior probability density function. The 1 and 2 sigma contours give an
indication of the allowed parameter range, with containment probabilities of 68 %
and 95 % respectively.

Regarding the use of priors: We make one note of caution regarding the results;
the credible regions depend sensitively on the choice of priors for the parameters.
This is not surprising since our constraints allow large regions of parameter space
to be equally well allowed, and so the use of priors which bias the parameters to
lower values (i.e. log-uniform compared with linearly uniform) is reflected in the final
result. Nonetheless, we are careful to limit the statements made in the text to those
which are independent of the choice of priors. In all figures the log-uniform priors
have been used for the masses and for Dii, as this represents the more conservative
choice. The ranges and priors for the parameters of the scan are summarized in
Table 4.4.

Our results are summarized in Figures 4.14 to 4.16 as 2σ contours, and in Table 4.5
as one-dimensional 1σ intervals. We consider three separate samples in which the
DM (the lightest χ) is the first, second and third member of the triplet (denoted ‘up’,
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‘charm’ and ‘top’ DM). Within each sample we present a low and high mass splitting
(2 % and 15 %), which primarily distinguish the effects caused by coannihilation in
the calculation of relic density, but affect all other bounds to some extent as we have
explicitly included the masses in each.

As we see from Figure 4.14, the masses of the DM and mediator are both required
to be in the TeV range, with upper limits in the tens of TeV. The DM and mediator
masses are strongly correlated with the Dii, as in Figure 4.14, due to the relic density
and mixing bounds which both scale approximately as (D/m)4 in the high mass
limit. Masses in the TeV range favour the Dii to be ≳ O (1). The mixing angles are
not well constrained in general; θij = 0 is favoured, but the full range of angles are
usually allowed with 2σ credibility.

TheDii themselves are highly correlated from the mixing constraints (see Figures 4.15
and 4.16) which depend on (λλ†)12 which is approximately

(λλ†)12 ≈
(
s13s23(D2

22 −D2
11) + s12(D2

33 −D2
11)
)
, (4.7.1)

and so we see D11 ∼ D33 (and less strongly D11 ∼ D22. Because the correlation
between D22 and D33 is less pronounced, the RD bound controls the behaviour and
produces an anti-correlation, since the annihilation cross section scales like

⟨σv⟩eff ∝ (D2
11 +D2

22 +D2
33)2 ∼ 3× 10−26 cm3 s−1 (4.7.2)

due to coannihilations, as such the trend is most pronounced for small mass splitting.
This is seen in the range of D22 for the small splitting data in Figure 4.16.

In all cases, increasing the mass splitting reduces the available parameter space of
the masses and couplings of the DM since the coannihilations and annihilations
of the heavy particles have a reduced effect on the relic density (scaling with a
Boltzmann factor exp(−∆m)). This allows less flexibility in the DM parameters
whilst potentially opening up the allowed parameters of the heavy particles, since
their couplings are out of reach of the astronomical constraints (indirect and direct
searches) which are proportional to the relic density of the lightest χ (scaling as Ω2

and Ω respectively). This effect can be clearly seen in the right panels of Figure 4.14,
where the 2 % splitting allows much smaller DM couplings compared with the 15 %
splitting, contrastingly in Figure 4.15 (middle right panel) the non DM coupling
space opens up with a larger splitting. Of course, since we have fixed the mass
splitting by hand, the heavy particle parameters are not totally free, and so the
parameter space is still reduced by the constraints we consider.

Top quark threshold effects are absent in the MCMC scan, due to the high masses
(mχ ≳ mt). Since mχ,mϕ ≫ mt the three quarks are kinematically equivalent, and
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Figure 4.14: Credible regions (2σ contours) in the mχ −mϕ plane
(left) and Dii −mϕ (right) where the DM is χ1 (top),
χ2 (middle) or χ3 (bottom). Two values of a mass
splitting are chosen, shown with solid and dashed con-
tours respectively.
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Figure 4.15: As for Figure 4.14 but for the D11 − D22 plane (left)
and D11−D33 (right), for two values of mass splitting
(dashed shaded, and solid darker shaded respectively).
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Figure 4.16: As for Figure 4.14 but for the D22 −D33 plane.
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so the bounds are not strongly dependent on the flavour of DM. The main differences
arise due to the quarks SM interactions which impact the DD and ID limits.

As described in Section 4.6, we have studied collider bounds on our model, but
these were not directly incorporated into our MultiNest routine as these bounds
are much more computationally intensive than the others. However, as we see from
Figure 4.13, the collider bounds only rule out sub-TeV scale masses, even at large
couplings and so we do not expect that a full likelihood function incorporating the
LHC constraints would give significantly different results. As a test, we checked a
sample of the points inside the 68 % (1σ) credible regions and found only a small
minority (of order 1 %) that would be excluded by collider data. We produce, for
each parameter, a marginalized posterior integrated over the remaining 7 parameters.
From this distribution we find the 1σ credible interval. The results are shown in
Table 4.5. This contains results for both uniform and log-uniform priors on Dii, mχ

and mϕ; when the two cases are discrepant by > 1σ this is due to a flat posterior,
and using the 2σ band instead the two agree.

4.7.1 Constrained Scenarios

We consider two extensions to the previous results:

1. In Section 4.2.2 we found that the mass splitting which is generated through
RG running of the DM self-energy is approximately proportional to D2

ii, this
motivates us to consider a scenario in which the couplings Dii are correlated
with the masses (thus introducing a coupling splitting ∆Dii/Dχ ∝ ∆mij/mχ).
The reduced parameter space enforces almost degenerate couplings which leads
to two important effects; firstly, it subjects all three χ to the astrophysical
constraints of indirect and direct detection, despite the heavier particles having
no relic density. By this we mean that, upon fixing the mass splitting, any
limits on the coupling strength of the relic particle are translated to restrict
the non-relic particles. Secondly, because the Dii are equal the mixing effects
are naturally small and as a result the mixing angles are much less constrained
as they do not need to be small to counteract flavour effects.

This scenario is representative of a model in which MFV is broken only slightly,
since the couplings to quark flavours are roughly equal, differing due to the
mixing angles and the small differences in the Dii. It is actually only slightly
less constrained in both mass and couplings than models in which flavour
violation is allowed, which counteracts the naive assumption that without
MFV, flavour observables restrict NP very high scales (O (100 TeV)).
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Figure 4.17: Comparison between 2σ contours of the full MCMC
scan and two extensions discussed in the text, for a
mass splitting of 2 % (left) or 15 % (right).
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2. When compared with the down type quark sector, flavour bounds are weaker
due to D0 being less well measured and our conservative treatment in which
we assume the SM contribution to D0 mixing is zero and the experimental
value comes entirely from the new physics. This is not entirely unreasonable,
since current short distance calculations of the observable are known to not
reproduce the experimental result, nor is it completely reasonable, since long
distance calculations are able to bring the SM into agreement.

To cover this caveat we consider a future scenario in which the SM calculation
reproduces the experimental number (but the precision of the measurement
stays at its current value). This is also conservative, since any interference
terms between the SM and DMFV amplitude are likely to be large. The
constraints on the mixing angles are more pronounced

Results for these two further scenarios are shown in Figure 4.17, and the 1σ intervals
in Tables 4.6 and 4.7.
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4.8 Summary

In this chapter we have analysed a model of dark matter, based on [248] but coupling
to up type quarks, that goes beyond MFV in order to allow potentially large new
effects in the flavour sector, and have seen how the combination of a wide range of
constraints can be used to place limits on models of this type. We approached this
task of combining many different constraints using the MCMC tool Multinest, which
allowed us to place limits on the high dimensional parameter space of our particular
model.

As we can see from Figure 4.14, the MCMC places lower bounds on the new particle
masses of at least 1 TeV for Top DM, and a few hundred GeV for Up and Charm
DM in certain cases. Our collider bounds (Figure 4.13) cannot further exclude Top
DM, even in the case of strong couplings, but could remove a small area of allowed
parameter space from the bottom end of the mass range in the case of Up/Charm
DM.

In [250] the authors consider this model, but examined the region of parameter
space with dominant top quark couplings. Our results in general agree with their
conclusions if we look at their more focused parameter space. For example, they find
strong constraints on θ12 except in the case of some degeneracy in the Dii, which
we replicate. Similarly the strong constraints on DM mass from relic density and
direct detection are reproduced. In their work, they explain how loop-level diagrams
contributing to direct detection favour the dominant top coupling – however as we
explain in Section 4.4, RG effects mean even when DM doesn’t couple to up quarks
directly, the mixing is substantial enough to weaken this conclusion (as long as the
mediator mass is large enough).

Given the current level of data, the model we examine of flavoured DM coupling
to up type quarks has large sections of its parameter space still allowed, so long as
one considers large mass new particles. However, even without the complimentary
collider results, the lower mass, phenomenologically interesting, regions of parameter
space are disfavoured by flavour, relic density, and direct detection considerations.

The MFV assumption is frequently invoked in simplified models in order to evade
potentially large flavour-violating effects. The level of robustness of this assumption
varies considerably between up type and down type quark couplings in the DMFV
model; for RH down type quarks strong flavour bounds do ensure that the assumption
is a good one. However for couplings to RH up type quarks we have seen that in fact
the flavour bounds are avoided in a large region of MFV-breaking parameter space.

One particular future development could alter this picture however – if a precise
theoretical prediction of D0 mixing observables could be obtained then either (a) a
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significant discrepancy requiring new physics is present, or (b) the SM predictions
are reproduced with a high precision. The former would motivate the exploration
of models which go beyond MFV, and the latter would make the MFV assumption
a necessary assumption of the DMFV simplified model if one wants to avoid some
fine-tuning.



Chapter 5

Charming new physics in rare Bs
decays and mixing?

5.1 Introduction

As we have discussed in Section 1.2, flavour processes such as rare B decays are
excellent probes of new physics at the electroweak scale and beyond, due to their
strong suppression in the SM. We also mentioned (in Section 1.3.4) how there are
interesting signs of a BSM effect in B → K (∗)µ+µ−, caused by a contact interaction
of the form (sγµPLb)(µ̄γµµ). Explaining the effect requires destructive interference
from BSM to reduce the Wilson coefficient C9 by O (20 %). As was mentioned, a
wide variety of models with new particles have been proposed (see e.g. [101–109,115,
117, 118, 121–126, 306–320]), which might in turn be part of a more comprehensive
sector of new dynamics. Since the early signs of the anomalies (i.e. before RK (∗))
suggested a flavour universal interaction, and noting that in the SM about half of
C9 comes from (short-distance) virtual-charm contributions, in this chapter we ask
whether new physics affecting the quark-level b → ccs transitions could cause the
anomalies by affecting rare B decays through a loop The bulk of these effects would
also be captured through an effective shift ∆C9(q2), with a possible dependence on
the dilepton mass q2. At the same time, such a scenario offers the exciting prospect
of confirming the rare B decay anomalies through correlated effects in hadronic B
decays into charm, with mixing observables such as the Bs meson width difference
standing out as precisely measured [199,321–323] and under reasonable theoretical
control. This is in contrast with the Z ′ and leptoquark models usually considered,
where correlated effects are typically restricted to other rare processes and are highly
model dependent. Specific scenarios of hadronic new physics in the B widths have
been considered previously [221,324–326], while the possibility of virtual charm BSM
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physics in rare semileptonic decay has been raised in [327] (see also [328]). As we
will show, viable scenarios exist which can mimic a shift ∆C9 = −O (1) while being
consistent with all other observables. In particular, very strong renormalisation-
group effects can generate large shifts in the (low-energy) effective C9 coupling from
small b → ccs couplings at a high scale without conflicting with the measured
B → Xsγ branching ratio [329–336].

5.2 Charming new physics scenario

We consider a scenario where new physics affects the b → ccs transitions. This could
be the case in models containing new scalars or new gauge bosons, or strongly coupled
new physics. Such models will typically affect other observables, but in a model-
dependent manner. For this paper, we restrict ourselves to studying the new effects
induced by modified b → ccs couplings, leaving construction and phenomenology of
concrete models for future work. We refer to this as the “charming BSM” (CBSM)
scenario. As long as the mass scale M of new physics satisfies M ≫ mB, the
modifications to the b → ccs transitions can be accounted for through a local
effective Hamiltonian,

Hcc
eff = 4GF√

2
V ∗

csVcb

10∑
i=1

(Cc
iQ

c
i + Cc′

i Q
c′
i ) . (5.2.1)

We choose our operator basis and renormalisation scheme to agree with [337] upon
the substitution d → b, s → c, u → s:

Qc
1 = (c iγµPLbj)(sjγµPLci), Qc

2 = (c iγµPLbi)(sjγµPLcj) ,
Qc

3 = (c iPLbj)(sjPRci), Qc
4 = (c iPLbi)(sjPRcj) ,

Qc
5 = (c iγµPRbj)(sjγµPLci), Qc

6 = (c iγµPRbi)(sjγµPLcj) ,
Qc

7 = (c iPRbj)(sjPRci), Qc
8 = (c iPRbi)(sjPRcj) ,

Qc
9 = (c iσµνPRbj)(sjσµνPRci), Qc

10 = (c iσµνPRbi)(sjσµνPRcj) .

(5.2.2)

The Qc′
i are obtained by changing all the quark chiralities. These chirality flipped

operators do not give any effect in C9, and so we discard the Qc′
i below. We split

the Wilson coefficients into SM and BSM parts,

Cc
i (µ) = Cc,SM

i (µ) + ∆Ci(µ) , (5.2.3)

where Cc,SM
i = 0 except for i = 1, 2 and µ is the renormalisation scale.
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b̄

s

s̄(b̄)

b(s)

c̄

c

b s

γq µ−

µ+

Figure 5.1: Leading CBSM contributions to rare decays (left), and
to width difference ∆Γs and lifetime ratio τ(Bs)/τ(Bd)
(right).

5.3 Rare B decays

The leading-order (LO), one-loop CBSM effects in radiative and rare semileptonic de-
cays may be expressed through “effective” Wilson coefficient contributions ∆Ceff

9 (q2)
and ∆Ceff

7 (q2) in an effective local Hamiltonian

Hrsl
eff = −4GF√

2
VtsVtb

(
Ceff

7 (q2)Q7γ + Ceff
9 (q2)Q9V

)
, (5.3.1)

where q2 is the dilepton mass and

Q7γ = emb

16π2 (sσµνPRb)F µν , Q9V = α

4π (sγµPLb)(ℓγµℓ) .

For small q2 (in particular, well below the charm resonances), ∆Ceff
9 (q2) and ∆Ceff

7 (q2)
govern the theoretical predictions for both exclusive (B → K (∗)ℓ+ℓ−, Bs → ϕℓ+ℓ−,
etc.) and inclusive B → Xsℓ

+ℓ− decay, up to O (αs) QCD corrections and power
corrections to the heavy quark limit that we neglect in our leading-order analy-
sis. Similarly, ∆Ceff

7 (0) determines radiative B decay rates. We will neglect the
small CKM combination V ∗

usVub, implying V ∗
csVcb = −V ∗

tsVtb, and focus on real (CP-
conserving) values for the Cc

i . From the diagram shown in Figure 5.1 (left) we then
obtain

∆Ceff
9 (q2) =

(
Cc

1,2 −
Cc

3,4

2

)
h− 2

9C
c
3,4 , (5.3.2)

∆Ceff
7 (q2) = mc

mb

[(
4Cc

9,10 − Cc
7,8

)
y + 4Cc

5,6 − Cc
7,8

6

]
, (5.3.3)

with Cc
x,y = 3∆Cx + ∆Cy and the loop functions

h(q2,mc, µ) = −4
9

[
ln m

2
c

µ2 −
2
3 + (2 + z)a(z)− z

]
, (5.3.4)
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y(q2,mc, µ) = −1
3

[
ln m

2
c

µ2 −
3
2 + 2a(z)

]
, (5.3.5)

where a(z) =
√
|z − 1| arctan 1√

z−1 and z = 4m2
c/q

2. Our numerical evaluation
employs the charm pole mass.

We note that only the four Wilson coefficients ∆C1−4 enter ∆Ceff
9 (q2). Conversely,

∆Ceff
7 (q2) is given in terms of the other six Wilson coefficients ∆C5−10. The appear-

ance of a one-loop, q2-dependent contribution to Ceff
7 is a novel feature in the CBSM

scenario. Numerically, the loop function a(z) equals one at q2 = 0 and vanishes at
q2 = (2mc)2. The constant terms and the logarithm accompanying y(q2,mc) par-
tially cancel the contribution from a(z) and they introduce a sizeable dependence on
the renormalisation scale µ and the charm quark mass. Since a shift of ∆Ceff

7 (q2) is
strongly constrained by the measured B → Xsγ decay rate, we do not consider the
coefficients ∆C5−10 in the remainder and focus on the four coefficients ∆C1−4, which
do not contribute to B → Xsγ at 1-loop order. Higher-order contributions can be
important if new physics generates ∆Ci at the weak scale or beyond, as is typically
expected. In this case large logarithms lnM/mB occur, requiring resummation. To
leading-logarithmic accuracy, we find

∆Ceff
7 = 0.02∆C1 − 0.19∆C2 − 0.01∆C3 − 0.13∆C4 , (5.3.6)

∆Ceff
9 = 8.48∆C1 + 1.96∆C2 − 4.24∆C3 − 1.91∆C4 , (5.3.7)

if ∆Ci are understood to be renormalised at µ = MW and ∆Ceff
7,9 at µ = 4.2 GeV. It

is clear that ∆C1 and ∆C3 contribute (strongly) to rare semileptonic decay but only
weakly to B → Xsγ.

5.4 Mixing and lifetime observables

A distinctive feature of the CBSM scenario is that non-zero ∆Ci affect not only
radiative and rare semileptonic decays, but also tree-level hadronic b → ccs transi-
tions. While the theoretical control over exclusive b → ccs modes is very limited at
present, the decay width difference ∆Γs and the lifetime ratio τ(Bs)/τ(Bd) stand out
as being calculable in the HQE, via the diagrams shown in Figure 5.1 (right). For
both observables, the heavy quark expansion gives rise to an operator product expan-
sion in terms of local ∆B = 2 (for the width difference) or ∆B = 0 (for the lifetime
ratio) operators. For the Bs width difference, we have ∆Γs = 2|Γs,SM

12 + Γcc̄
12| cosϕs

12,



5.4. Mixing and lifetime observables 121

where the phase ϕs
12 is small. Neglecting the strange quark mass, we find

Γcc
12 =−G2

F (V ∗
csVcb)2m2

bMBsf
2
Bs

√
1− 4x2

c

576π ×{ [
16(1− x2

c)(4Cc,2
2 + Cc,2

4 )

+8(1− 4x2
c)(12Cc,2

1 + 8Cc
1C

c
2 + 2Cc

3C
c
4 + 3Cc,2

3 )
−192x2

c(3Cc
1C

c
3 + Cc

1C
c
4 + Cc

2C
c
3 + Cc

2C
c
4)
]
B1

+2(1 + 2x2
c)
(

MBs

mb +ms

)2

×

(4Cc,2
2 − 8Cc

1C
c
2 − 12Cc,2

1 − 3Cc,2
3 − 2Cc

3C
c
4 + Cc,2

4 )B3

}
,

(5.4.1)

with xc = mc/mb. B1 and B3 are defined as in Equation C.0.2 with values taken from
[220]. For our numerical evaluation of Γcc

12, we split the Wilson coefficients according
to Equation 5.2.3, subtract from the LO expression (Equation 5.4.1) the pure SM
contribution and add the NLO SM expressions from [173–177, 207]. In general, a
modification of Γcc

12 also affects the semi-leptonic CP asymmetries. However, since
we consider CP-conserving new physics in this paper and since the corresponding
experimental uncertainties are still large, the semi-leptonic asymmetries will not lead
to an additional constraint.

In a similar manner, for the lifetime ratio we find

τ(Bs)
τ(Bd) =

(
τ(Bs)
τ(Bd)

)
SM

+
(
τ(Bs)
τ(Bd)

)
NP

, (5.4.2)

where the SM contribution is taken from [215] and

(
τ(Bs)
τ(Bd)

)
NP

= G2
F |VcbVcs|2m2

bMBsf
2
BsτBs

√
1− 4x2

c

144π ×{
(1− x2

c)
[
(4Cc,2

1,2 + Cc,2
3,4)B1 + 6(4Cc,2

2 + Cc,2
4 )ϵ1

]
− 12x2

c

[
Cc

1,2C
c
3,4B1 + 6Cc

2C
c
4ϵ1

]
− (1 + 2x2

c)
(

MBs

mb +ms

)2

×
[
(4Cc,2

1,2 + Cc,2
3,4)B2 + 6(4Cc,2

2 + Cc,2
4 )ϵ2

]}
,

(5.4.3)

subtracting the SM part and defining B1, B2, ϵ1, ϵ2 as in Equations C.0.3 and C.0.4
with values taken from our work in Chapter 6. We interpret the quark masses as
MS parameters at µ = 4.2 GeV.
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Figure 5.2: Mixing observables versus rare decays in the CBSM
scenario, in the ∆C1−∆C2 plane (left) and ∆C3−∆C4
plane (right). All Wilson coefficients are renormalised
at µ = 4.2 GeV and those not corresponding to either
axis set to zero. The black dot corresponds to the SM,
i.e. ∆Ci = 0. The measured central value for the width
difference is shown as brown (solid) line together with
the 1σ allowed region. The lifetime ratio measurement
is depicted as green (dashed) line and band. Overlaid
are contours of ∆Ceff

9 (5 GeV2) = −1,−2 (black, dashed)
and ∆Ceff

9 (2 GeV2) = −1,−2 (red, dotted), as computed
from Equation 5.3.2, and of ∆Ceff

9 = 0 (black, solid).

5.5 Rare decays versus lifetimes – low-scale
scenario

We are now in a position to confront the CBSM scenario with rare decay and
mixing observables, as long as we consider renormalisation scales µ ∼ mB. Then
the logarithms inside the h function entering Equation 5.3.2 are small and our
leading-order calculation should be accurate. Such a scenario is directly applicable
if the mass scale M of the physics generating the ∆Ci is not too far above mB,
such that ln(M/mB) is small. Figure 5.2 (left) shows the experimental 1σ allowed
regions for the width difference [338] and lifetime ratio [339] in the ∆C1−∆C2 plane.
The central values are attained on the brown (solid) and green (dashed) curves,
respectively. The measured lifetime ratio and the width difference measurement
can be simultaneously accommodated for different values of the Wilson coefficients:
in the ∆C1 − ∆C2 plane, we find the SM solution, as well as a solution around
∆C1 = −0.5 and ∆C2 ≈ 0. In the ∆C3 − ∆C4 plane, we have a relatively broad
allowed range, roughly covering the interval [−0.9,+0.7] for ∆C3 and [−0.6,+1.1]
for ∆C4. For further conclusions, a considerably higher precision in experiment and
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theory is required for ∆Γs and τ(Bs)/τ(Bd). Also shown in the plot are contour
lines for the contribution to the effective semileptonic coefficient ∆Ceff

9 (q2), both for
q2 = 2 GeV2 and q2 = 5 GeV2. We see that sizeable negative shifts are possible while
respecting the measured width difference and the lifetime ratio. For example, a shift
∆Ceff

9 ∼ −1 as data may suggest could be achieved through ∆C1 ∼ −0.5 alone. Such
a value for ∆C1 may well be consistent with CP-conserving exclusive b → ccs decay
data, where no accurate theoretical predictions exist. On the other hand, ∆Ceff

9

only exhibits a mild q2-dependence. Distinguishing this from possible long-distance
contributions would require substantial progress on the theoretical understanding of
the latter.

We can also consider other Wilson coefficients, such as the pair (∆C3,∆C4) (right
panel in Figure 5.2). A shift ∆Ceff

9 ∼ −1 is equally possible and consistent with the
width difference, requiring only ∆C3 ∼ 0.5.

5.6 High-scale scenario and RGE

5.6.1 RG enhancement of ∆Ceff
9

If the CBSM operators are generated at a high scale then large logarithms lnM/mB

appear. Their resummation is achieved by evolving the initial (matching) conditions
Ci(µ0 ∼ M) to a scale µ ∼ MB according to the coupled renormalisation-group
equations (RGE),

µ
dCj

dµ
(µ) = γij(µ)Ci(µ) , (5.6.1)

where γij is the anomalous dimension matrix. As is well known, the operators Qc
i

mix not only with Q7 and Q9, but also with the 4 QCD penguin operators P3−6

and the chromodipole operator Q8g (defined as in [340]), which in turn mix into Q7.
Hence the index j runs over 11 operators with ∆B = −∆S = 1 flavour quantum
numbers in order to account for all contributions to C7(µ) that are proportional to
∆Ci(µ0). Most entries of γij are known at LO [337, 340–354]; our novel results are
(i = 3, 4)

γ
(0)
Q

c
i Q̃9

=
(4

3 ,
4
9

)
i
, γ

(0)
Q

c
i P4

=
(

0,−2
3

)
i
, γ

eff(0)
Q

c
i Q7

=
(

0, 224
81

)
i
, (5.6.2)

where Q̃9 = (4π/αs)Q9V (µ) and γ
eff(0)
Q

c
i Q7

requires a two-loop calculation. (See Ap-
pendix F for further technical information.) Solving the RGE for µ0 = MW ,
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µ = 4.2 GeV, and αs(MZ) = 0.1181 results in the CBSM contributions

∆C1(µ)
∆C2(µ)
∆C3(µ)
∆C4(µ)
∆Ceff

7 (µ)
∆Ceff

9 (µ)


=



1.12 −0.27 0 0
−0.27 1.12 0 0

0 0 0.92 0
0 0 0.33 1.91

0.02 −0.19 −0.01 −0.13
8.48 1.96 −4.24 −1.19




∆C1(µ0)
∆C2(µ0)
∆C3(µ0)
∆C4(µ0)

 . (5.6.3)

A striking feature are the large coefficients in the ∆Ceff
9 case, which are O (1/αs) in

the logarithmic counting. The largest coefficients appear for ∆C1 and ∆C3, which
at the same time practically do not mix into Ceff

7 . This means that small values
∆C1 ∼ −0.1 or ∆C3 ∼ 0.2 can generate ∆Ceff

9 (µ) ∼ −1 while having essentially no
impact on the B → Xsγ decay rate. Conversely, values for ∆C2 or ∆C4 that lead
to ∆Ceff

9 ∼ −1 lead to large effects in Ceff
7 and B → Xsγ.

5.6.2 Phenomenology for high NP scale

The situation in various two-parameter planes is depicted in Figure 5.3, where the
1σ constraint from B → Xsγ is shown as blue, straight bands. (We implement it by
splitting B(B → Xsγ) into SM and BSM parts and employ the numerical result and
theory error from [355] for the former. The experimental result is taken from [356].)
The top row corresponds to Figure 5.2, but contours of given ∆C9 lie much closer
to the origin. All six panels testify to the fact that the SM is consistent with all
data when leaving aside the question of rare semileptonic B decays – the largest pull
stems from the fact that the experimental value for τ(Bs)/τ(Bd) is just under 1.5
standard deviations below the SM expectation, such that the black (SM) point is
less than 0.5σ outside the green area. Our main question now is: can we have a new
contribution ∆Ceff

9 ∼ −1 to rare semileptonic decays, while being consistent with
the bounds stemming from b → sγ, ∆Γs and τ(Bs)/τ(Bd)? This is clearly possible
(indicated by the yellow star in the plots) if we have a new contribution ∆C3 ≈ 0.2,
see the three plots of the ∆Ci − ∆C3 planes in Figure 5.3 (right on the top row,
left on the middle row and left on the lower row). In these cases, the ∆Ceff

9 ∼ −1
solution is even favoured compared to the SM solution. A joint effect in ∆C2 ≈ −0.1
and ∆C4 ≈ 0.3 can also accommodate our desired scenario (see the right plot on the
lower row), while new BSM effects in the pairs ∆C1,∆C2 and ∆C1,∆C4 alone are
less favoured. One could also consider three or all four ∆Ci simultaneously.
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Figure 5.3: Mixing observables versus rare decays, for ∆Ci renor-
malised at µ0 = MW . Colour coding as in Figure 5.2,
B → Xsγ constraint shown in addition (straight blue
bands).
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5.6.3 Implications for UV physics

Our model-independent results are well suited to study the rare B decay and lifetime
phenomenology of UV completions of the Standard Model. Any such completion may
include extra UV contributions to C7(M) and C9(M), correlations with other flavour
observables, collider phenomenology, etc.; the details are highly model-dependent
and beyond the scope of our model-independent analysis. Here we restrict ourselves
to some basic sanity checks.

Taking the case of ∆C1(M) ∼ −0.1 corresponds to a naive ultraviolet scale

Λ ∼
(

4GF√
2
|V ∗

csVcb| × 0.1
)−1/2

∼ 3 TeV .

This effective scale could arise in a weakly-coupled scenario from tree-level exchange
of new scalar or vector mediators, or at loop level in addition from fermions; or
the effective operator could arise from strongly-coupled new physics. For a tree-
level exchange, Λ ∼ M/g∗ where g∗ = √g1g2 is the geometric mean of the relevant
couplings. For weak coupling g∗ ∼ 1, this then gives M ∼ 3 TeV. Particles of
such mass are certainly allowed by collider searches if they do not couple (or only
sufficiently weakly) to leptons and first-generation quarks. Multi-TeV weakly coupled
particles are also not generically in violation of electroweak precision tests of the SM.
Loop-level mediation would require mediators close to the weak scale which may be
problematic and would require a specific investigation; this is of course unsurprising
given that b → ccs transitions are mediated at tree level in the SM. The same
would be true in a BSM scenario that mimics the flavour suppressions in the SM
(such as MFV models). Conversely, in a strongly-coupled scenario we would have
M ∼ g∗Λ ∼ 4πΛ ∼ 30 TeV. This is again safe from generic collider and precision
constraints, and a model-specific analysis would be required to say more.

Finally, as all CBSM effects are lepton-flavour-universal, they cannot on their own
account for departures of the lepton flavour universality parameters R

K
(∗) [87] from

the SM values as suggested by current experimental measurements [84, 85, 357].
However, even if those departures are real, they may still be caused by direct UV
contributions to ∆C9. For example, as shown in [96], a scenario with a muon-specific
contribution ∆Cµ

9 = −∆Cµ
10 ∼ −0.6 and in addition a lepton-universal contribution

∆C9 ∼ −0.6, which may have a CBSM origin, is perfectly consistent with all rare B
decay data, and in fact marginally preferred.
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Figure 5.4: Future prospects for mixing observables. Dashed: con-
tours of constant width difference, dotted: contours of
constant lifetime ratio. See text for discussion.

5.7 Prospects and summary

The preceding discussion suggests that a precise knowledge of width difference and
lifetime ratio, as well as B(B → Xsγ), can have the potential to identify and dis-
criminate between different CBSM scenarios, or rule them out altogether. This is
illustrated in Figure 5.4, showing contour values for future precision both in mix-
ing and lifetime observables. In each panel, the solid (brown and green) contours
correspond to the SM central values of the width difference and lifetime ratio (re-
spectively). The spacing of the accompanying contours is such that the area between
any two neighbouring contours corresponds to a prospective 1σ-region, assuming
a combined (theoretical and experimental) error on the lifetime ratio of 0.001 and
a combined error on ∆Γs of 5 % (theory is already there for the lifetime ratio, and
experiment for ∆Γ). The assumed future errors are ambitious but seem feasible with
expected experimental and theoretical progress. Overlaid is the (current) B → Xsγ

constraint (blue). The figure indicates that a discrimination between the SM and
the scenario where ∆C9 ≈ −1, while B(B → Xsγ) is SM-like is clearly possible. A
crucial role is played by the lifetime ratio τ(Bs)/τ(Bd): in e.g. the ∆C3 −∆C4 case
a 1σ deviation of the lifetime ratio almost coincides with the ∆C9 = −1 contour
line; a further precise determination of ∆Γs could then identify the point on this line
chosen by nature. Further progress on B → Xsγ in the Belle II era would provide
complementary information.

In summary, we have given a comprehensive, model-independent analysis of BSM
effects in partonic b → ccs transitions (CBSM scenario) in the CP-conserving case,
focusing on those observables that can be computed in a heavy quark expansion.
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An effect in rare semileptonic B decays compatible with hints from current LHCb
and B-factory data can be generated, while satisfying the B → Xsγ constraint.
It can originate from different combinations of b → ccs operators. The required
Wilson coefficients are so small that constraints from B decays into charm are not
effective, particularly if new physics enters at a high scale; then large renormalisation-
group enhancements are present. Likewise, there are no obvious model-independent
conflicts with collider searches or electroweak precision observables. A more precise
measurement of mixing observables and lifetime ratios, at a level achievable at LHCb,
may be able to confirm (or rule out) the CBSM scenario, and to discriminate between
different BSM couplings. Finally, all CBSM effects are lepton-flavour-universal; the
current RK and RK

∗ anomalies would either have to be mismeasurements or require
additional lepton-flavour-specific UV contribution to C9; such a combined scenario
has been shown elsewhere [96] to be consistent with all rare B decay data and also
presents the most generic way for UV physics to affect rare decays. With the stated
caveats, our conclusions are rather model independent. It would be interesting to
construct concrete UV realizations of the CBSM scenario, which almost certainly
will affect other observables in a correlated, but model-dependent manner.



Chapter 6

Dimension-six matrix elements
from sum rules

6.1 Introduction

As we have seen in Section 2.4.2, the SM contribution to meson mixing arises at the
1-loop level and is both CKM and GIM suppressed. This makes these observables
highly sensitive to new physics contributions (an issue which we will explore further
in Chapter 7), and so a precise knowledge of the theoretical predictions is very
important. The SM calculation can be factorised into a perturbative calculation of
the Wilson coefficients and a non perturbative part coming from the matrix elements
of effective operators that contribute to mixing. While the perturbative part (of
which we showed the leading order calculation at the start of this thesis) is known
up to NLO in QCD, and the first steps towards the NNLO QCD corrections have
recently been done [222], the dominant uncertainty comes from the non perturbative
part of the calculation. These hadronic matrix elements are usually determined by
lattice simulations and results for the leading dimension-six operators are available
from several collaborations [181, 217, 358]. Using the most recent result [217], a
small tension at the level of 2σ arises for Bs mixing (see [217] and Chapters 3
and 7). Given the important nature of Bs mixing observables in constraining new
physics with a non-trivial flavour structure, it is important to try and settle this
issue. An independent determination of the matrix elements is an important step in
this direction, which we will take in this chapter.

QCD sum rules [359,360] provide an alternative way to determine hadronic quantities
– this approach employs quark-hadron duality and the analyticity of Green functions,
as opposed to a numerical solution of the QCD path integral as done by lattice
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groups. Since its sources of uncertainty are entirely different from lattice simulations,
sum rule analyses can provide truly independent results.

We determine the hadronic matrix elements of the dimension-six ∆B = 2 operators
for B mixing from a sum rule for three-point correlators first introduced in [361].
Since the sum rule is valid at scales µρ ∼ 1.5 GeV which are much smaller than the
bottom quark mass, we formulate the sum rule in HQET. We then run the HQET
matrix elements up to a scale µm of the order of the bottom quark mass where the
matching to QCD can be performed without introducing large logarithms. Earlier
sum rule results are available for the SM operator Q1 [362, 363] and condensate
corrections have been computed for dimension-six [363–366] and dimension-seven
[364] operators. We can apply the same technique for a variety of other operators,
and so we also study dimension-six operators that contribute to mixing in the charm
sector and to the lifetimes of B and D mesons, since, as we explain below, these are
much needed results.

The theory calculation for the mixing induced width differences and the meson
lifetimes are based on the HQE, which was covered in Section 2.2. As we saw in
Chapter 3, violations of quark-hadron duality in the HQE are currently limited to
around 20 % by the current agreement between experiment and theory. As was
discussed there as well, lifetimes provide an excellent testing ground for the HQE,
but this is hindered by the availability of up to date calculations of the relevant
non-perturbative parameters as these are the dominant uncertainties here (for a
review of the calculation of meson lifetimes, see e.g. [141]). For B mesons, the most
recent calculation comes from a conference proceedings in 2001 [216], while for D
mesons the calculation has never been done and so the corresponding SM prediction
has a very large uncertainty [230].

In the charm sector the validity of the HQE is rather uncertain due to the smaller
charm mass (mc ∼ mb/3). The direct translation of the predictions for B mixing fails
by several orders of magnitude [229], but it has been argued that higher-dimensional
contributions can lift the severe GIM suppression and potentially explain the size
of mixing observables [225, 226, 229, 231, 232]. For D meson lifetimes, while the
uncertainty is large, the central value agrees well with experiment and so there is no
immediate sign of a breakdown of the HQE.

The outline of this chapter is as follows: In Section 6.2 we describe the details of the
QCD-HQET matching computation focussing on ∆B = 2 operators. The sum rule
and the calculation of the three-point correlators are discussed in Section 6.3. Our
results for the matrix elements are presented in Section 6.4 and compared to other
recent works. In Section 6.5 we study ∆B = 0 operators and ratios of B meson
lifetimes. We determine the matrix elements of ∆C = 0, 2 operators in Section 6.6
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and update the HQE result for the D+−D0 lifetime ratio using these results. Finally,
we summarise our results in Section 6.7.

6.2 QCD-HQET matching for ∆B = 2 operators

We perform the matching computation between QCD and HQET operators at the
1-loop level. The details of the computation are described in Section 6.2.1 for the
∆B = 2 operators. Our results for the matching of the operators and bag parameters
are given in Section 6.2.2 and Section 6.2.3, respectively.

6.2.1 Setup

The matching calculation for the SM operator Q1 appearing in ∆Ms has been
performed in [367–369]. We compute the matching coefficients of the full dimension-
six ∆B = 2 operator basis needed for ∆Ms in BSM theories and for ∆Γs in the SM.
We work in dimensional regularization with d = 4 − 2ϵ and an anti-commuting γ5

(NDR scheme). We consider the following operators in QCD

Q1 = (biγµ(1− γ5)qi)(bjγ
µ(1− γ5)qj) ,

Q2 = (bi(1− γ5)qi)(b(1− γ5)b) , Q3 = (bi(1− γ5)qj)(bj(1− γ5)qi) ,
Q4 = (bi(1− γ5)qi)(b(1 + γ5)b) , Q5 = (bi(1− γ5)qj)(bj(1 + γ5)qi) .

(6.2.1)

To fix the renormalisation scheme we also have to specify a basis of evanescent
operators [370–372] – we do this following [173]. Evanescent operators are those
with Dirac structures that vanish in d = 4 dimensions, but whose matrix elements do
not necessarily vanish beyond tree-level. The explicit form of our choice of evanescent
operators can be found in Appendix G.1. On the HQET side, we have the operators

Q̃1 = (h̄{(+)
i γµ(1− γ5)qi)(h̄

(−)}
j γµ(1− γ5)qj) ,

Q̃2 = (h̄{(+)
i (1− γ5)qi)(h̄

(−)}
j (1− γ5)qj) ,

Q̃4 = (h̄{(+)
i (1− γ5)qi)(h̄

(−)}
j (1 + γ5)qj) ,

Q̃5 = (h̄{(+)
i (1− γ5)qj)(h̄

(−)}
j (1 + γ5)qi) ,

(6.2.2)

where the HQET field h(+)(x) annihilates a bottom quark, h(−)(x) creates an anti-
bottom and we have introduced the notation

(h̄{(+)ΓAq)(h̄(−)}ΓBq) = (h̄(+)ΓAq)(h̄(−)ΓBq) + (h̄(−)ΓAq)(h̄(+)ΓBq) . (6.2.3)

Note that no operator Q̃3 appears on the HQET side because it is not linearly
independent, just like its QCD equivalent at leading order in 1/mb [176]. We define
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Figure 6.1: QCD (Di) and HQET (Ei) diagrams that enter the
matching. Symmetric diagrams are not shown.

the evanescent HQET operators up to three constants ai with i = 1, 2, 3 which allow
us to keep track of the scheme dependence. Again the explicit basis of the evanescent
operators can be found in Appendix G.1.

The matching condition for the ∆B = 2 operators is given by

⟨Qi⟩ (µ) =
∑

CQiQ̃j
(µ) ⟨Q̃j⟩ (µ) +O

(
1
mb

)
, (6.2.4)

where ⟨A⟩ = ⟨B |A|B⟩. The matching coefficients can be expanded in perturbation
theory and take the form

CQiQ̃j
(µ) = C

(0)
QiQ̃j

+ αs(µ)
4π C

(1)
QiQ̃j

(µ) + . . . . (6.2.5)

The partonic QCD matrix elements are

⟨Q⟩ = δαβδγδ

Nc

ZOS
b ZOS

q ZQO

 O
b̄α d̄δ

bγdβ O

b̄α d̄δ

bγdβ

+

+O (αs)

 , (6.2.6)

where we sum over O, including all physical and evanescent operators, and the colour
singlet initial and final state have been projected out.

The two tree-level contractions appear with a relative minus sign, as we saw in
Equation 2.4.18. The gluon corrections are shown in Figure 6.1 and do not contain
self-energy insertions on the external legs, since the quark fields are renormalised
in the on-shell scheme. The HQET matrix elements follow from the replacements
Q→ Q̃, O → Õ, ZOS

b → ZOS
h and using HQET propagators instead of the full QCD
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ones for the bottom quark. The heavy quark on-shell renormalisation constants are

ZOS
b = 1− αsCF

4π

(
3
ϵ

+ 4 + 3 ln µ2

m2
b

)
+O

(
α2

s

)
, ZOS

h = 1 . (6.2.7)

The light quark renormalisation is trivial in the massless case: ZOS
q = 1. For the

renormalisation of the physical operators the MS scheme is used. In accordance
with [370–372] the evanescent operators are renormalised by a finite amount such
that their physical matrix elements vanish. Consequently the Wilson coefficients
CQiẼj

are not required for the determination of the hadronic matrix elements and
are omitted in the results shown below. However, in the matching computation
itself the matrix elements are taken between external on-shell quark states and are
therefore not IR finite. While the IR divergences cancel in the matching of the
QCD to the HQET operators there are non-vanishing contributions to the physical
matching coefficients CQQ̃ from matrix elements of the evanescent operators that
are multiplied by IR poles since the evanescent operators are defined differently in
QCD and HQET (see Appendix G.1).

We also find that the NLO matching coefficients C(1)
Q3Q̃j

of the operator Q3 are
affected by the finite renormalisation of the evanescent operator Ẽ2 which contains
contributions proportional to the physical operators. This usually only happens at
NNLO (as is the case for the other operators) but is already present here at NLO
because the tree-level matching coefficient C(0)

Q3Ẽ2
of this operator is non-vanishing

and, therefore, the NLO matrix element of the evanescent HQET operator Ẽ2 already
appears at NLO in the matching calculation.

In the computation we have used both a manual approach and an automated setup
utilizing QGRAF [373] and Mathematica to generate the amplitudes. The Dirac
algebra has been performed with a customized version of TRACER [374] as well as
with Package-X [375, 376] and the QCD loop integrals have been evaluated using
Package-X. We have also checked our results by performing the calculation with a
gluon mass as an IR regulator and found full agreement.

6.2.2 Results

We write the LO QCD anomalous dimension matrix (ADM) as

γ(0) =
γ(0)

QQ γ
(0)
QE

γ
(0)
EQ γ

(0)
EE

 , (6.2.8)

where γ(0)
QQ is the ADM for the physical set of operators (Equation 6.2.1), γ(0)

QE de-
scribes the mixing of the physical operators into the evanescent ones (Equation G.1.1),
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γ
(0)
EQ vanishes (see [372]) and γ(0)

EE is not required. We decompose the LO HQET ADM
γ̃(0) analogously. Our results for the non-vanishing entries are given in Appendix G.1.

The non-vanishing Wilson coefficients at LO are

C
(0)
Q1Q̃1

= 1 , C
(0)
Q2Q̃2

= 1 , C
(0)
Q3Q̃1

= −1
2 ,

C
(0)
Q3Q̃2

= −1 , C
(0)
Q4Q̃4

= 1 , C
(0)
Q5Q̃5

= 1 .
(6.2.9)

The NLO corrections to the matching coefficients read

C
(1)
QQ̃

=



−41
3 + a2

12 − 6Lµ −8 0 0
3
2 −

a1
12 + Lµ 8 + 4Lµ 0 0

5 + 2a1−a2
24 + 4Lµ 4 + 4Lµ 0 0

0 0 8− a3
24 + 9Lµ

2 −4 + a3
8 −

3Lµ

2

0 0 4 + a3
8 + 3Lµ

2 −8− a3
24 −

9Lµ

2


, (6.2.10)

where Lµ = ln(µ2/m2
b) and we have set Nc = 3 to keep the results compact.

6.2.3 Matching of QCD and HQET bag parameters

We define the QCD bag parameters BQ as

⟨Q(µ)⟩ = AQf
2
BM

2
BBQ(µ) , (6.2.11)

where the coefficients read

AQ1 = 2 + 2
Nc

,

AQ2 = M2
B

(mb +mq)2

(
−2 + 1

Nc

)
, AQ3 = M2

B

(mb +mq)2

(
1− 2

Nc

)
,

AQ4 = 2 M2
B

(mb +mq)2 + 1
Nc

, AQ5 = 2
Nc

M2
B

(mb +mq)2 + 1 ,

(6.2.12)

and the B meson decay constant fB is defined as

⟨0|bγµγ5q|B(p)⟩ = ifBp
µ , (6.2.13)

which match our definitions in Appendix C (up to a factor four due to the normali-
sation of the PL,R projection operators). We note that the quark masses appearing
in Equation 6.2.12 are not MS masses which is the usual convention today [207,217],
but pole masses. We prefer the definition in Equation 6.2.11 for the analysis be-
cause the use of MS masses makes the LO ADM of the bag parameters explicitly
µ-dependent and prohibits an analytic solution of the RGE. At the end we convert
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our results to the convention of [207,217] which we denote as

⟨Q(µ)⟩ = AQ(µ)f 2
BM

2
BBQ(µ) , (6.2.14)

where the AQ(µ) follow from AQ with the replacements mb → mb(µ) and mq →
mq(µ). Similar to Equation 6.2.11, we use for the HQET operators

⟨⟨Q̃(µ)⟩⟩ = AQ̃ F
2(µ)BQ̃(µ) , (6.2.15)

where

AQ̃1
= 2 + 2

Nc

, AQ̃2
= −2 + 1

Nc

, AQ̃4
= 2 + 1

Nc

, AQ̃5
= 1 + 2

Nc

, (6.2.16)

and the matrix elements have been taken between non-relativistically normalized
states ⟨⟨Q̃i(µ)⟩⟩ ≡ ⟨B|Q̃i(µ)|B⟩ with

|B(p)⟩ =
√

2MB |B(v)⟩+O (1/mb) , (6.2.17)

such that
⟨B(v′)|B(v)⟩ = v0

M3
B

(2π)3δ(3)(v′ − v) . (6.2.18)

The parameter F (µ) is defined as

⟨0|h̄(−)γµγ5q|B(v)⟩ = iF (µ)vµ , (6.2.19)

and related to the decay constant by

fB =
√

2
MB

C(µ)F (µ) +O (1/mb) , (6.2.20)

with [149]

C(µ) = 1− 2CF

αs(µ)
4π +O

(
α2

s

)
. (6.2.21)

From Equations 6.2.11 and 6.2.15, we obtain (by use of Equations 6.2.4, 6.2.17
and 6.2.20)

BQi
(µ) =

∑
j

AQ̃j

AQi

CQiQ̃j
(µ)

C2(µ)
BQ̃j

(µ) +O (1/mb) . (6.2.22)

The HQET bag parameters BQ̃ are determined from a sum rule analysis, which we
describe in the next section.
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6.3 HQET sum rule

The HQET sum rule is introduced in Section 6.3.1. We give results for the double-
discontinuity of the three-point correlators in Section 6.3.2 and describe the deter-
mination of HQET and QCD bag parameters in Section 6.3.3.

6.3.1 The sum rule

We define the three-point correlator

KQ̃(ω1, ω2) =
∫
ddx1 d

dx2 e
ip1·x1−ip2·x2 ⟨0|T

[
ȷ̃+(x2)Q̃(0)ȷ̃−(x1)

]
|0⟩ , (6.3.1)

where ω1,2 = p1,2 · v and

ȷ̃+ = q̄γ5h(+) , ȷ̃− = q̄γ5h(−) , (6.3.2)

are interpolating currents for the pseudoscalar B and B mesons. The correlator
(Equation 6.3.1) is analytic in ω1,2 apart from discontinuities for positive real ω.
This allows us to construct a dispersion relation

KQ̃(ω1, ω2) =
∞∫

0

dη1 dη2
ρQ̃(η1, η2)

(η1 − ω1)(η2 − ω2)
+ subtraction terms , (6.3.3)

where ρQ̃ is the double discontinuity of KQ̃ in ω1 and ω2. The second term on the
right originates from the integration of KQ̃ along the circle at infinity in the complex
η1 and/or η2 planes and is therefore polynomial in ω1 and/or ω2. The correlator KQ̃

can be computed by means of an OPE

KOPE
Q̃ (ω1, ω2) = Kpert

Q̃
(ω1, ω2) +K

⟨q̄q⟩
Q̃

(ω1, ω2) ⟨q̄q⟩

+K
⟨αsG

2⟩
Q̃

(ω1, ω2) ⟨αsG
2⟩+ . . .

(6.3.4)

for values of ω1,2 that lie far away from the physical cut. Assuming quark-hadron
duality, we can equate the correlator KOPE

Q̃ with its hadronic counterpart

Khad
Q̃ (ω1, ω2) =

∞∫
0

dη1 dη2
ρhad

Q̃ (η1, η2)
(η1 − ω1)(η2 − ω2)

+ subtraction terms , (6.3.5)

which is obtained from integration over the hadronic spectral function

ρhad
Q̃ (ω1, ω2) = F 2(µ)⟨⟨Q̃(µ)⟩⟩δ(ω1 − Λ)δ(ω2 − Λ) + ρcont

Q̃ (ω1, ω2) . (6.3.6)

We use a double Borel transformation with respect to ω1,2 to remove the contribution
from the integration over the circle at infinity and to suppress the sensitivity to the
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Q̃ j+j−

q

q̄h(−)

h(+)

Figure 6.2: Leading order diagram for the three-point HQET corre-
lator (Equation 6.3.1). The sum over the two possible
contractions of the operator Q̃ is implied.

continuum part ρcont
Q̃ of the spectral function, which yields the sum rule

∞∫
0

dω1 dω2 e
− ω1

t1
− ω2

t2 ρOPE
Q̃ (ω1, ω2) =

∞∫
0

dω1 dω2 e
− ω1

t1
− ω2

t2 ρhad
Q̃ (ω1, ω2) . (6.3.7)

In principle one can proceed by modelling the continuum ρcont
Q̃ . The desired matrix

element of the operator Q̃ between the mesonic ground state can then be disen-
tangled by varying the Borel parameters. However, the continuum contribution is
exponentially suppressed in the Borel sum rule and it is safe to simply “cut off” the
sum rule by assuming that

ρcont
Q̃ (ω1, ω2) = ρOPE

Q̃ (ω1, ω2) [1− θ(ωc − ω1)θ(ωc − ω2)] , (6.3.8)

which directly yields a finite-energy sum rule for the matrix elements

F 2(µ)⟨⟨Q̃(µ)⟩⟩e− Λ
t1

− Λ
t2 =

ωc∫
0

dω1 dω2 e
− ω1

t1
− ω2

t2 ρOPE
Q̃ (ω1, ω2) . (6.3.9)

From this expression, we see that a determination of the HQET bag parameters
requires the computation of the spectral functions ρOPE

Q̃ . The leading condensate
corrections have been determined in [364]. We compute the O(αs) corrections to the
perturbative contribution below.

6.3.2 Spectral functions at NLO

We determine the spectral functions by first computing the correlator

Kpert
Q̃

(ω1, ω2) = K
(0)
Q̃

(ω1, ω2) + αs

4πK
(1)
Q̃

(ω1, ω2) + . . . (6.3.10)

and then taking its double discontinuity. At LO we have to evaluate the diagram in
Figure 6.2 which factorizes into two two-point functions.
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Figure 6.3: Diagrams contributing to the three-point HQET corre-
lator (Equation 6.3.1) at NLO. Symmetric diagrams are
not shown.

We obtain1

K
(0)
Q̃i

(ω1, ω2) =
(
AQ̃i
− δi1

2ϵ
Nc

)
Π(0)(ω1)Π(0)(ω2) , (6.3.11)

where
Π(0)(ω) = − 4Nc

(4π)2−ϵ µ̃
2ϵ (−2ω)2−2ϵ Γ(2− ϵ)Γ(−2 + 2ϵ) (6.3.12)

is the LO result for the two-point correlator

Π(ω) = i
∫
ddx eip·x ⟨0|T

[
ȷ̃†+(0)ȷ̃+(x)

]
|0⟩ , (6.3.13)

where ω = p · v and the use of µ̃2 = µ2 exp(γE)/(4π) corresponds to the MS scheme.

The bare NLO correction K(1),bare
Q̃

is given by the diagrams shown in Figure 6.3. At
this order we get corrections that do not factorize due to gluon exchange between
the left and right-hand side. These genuine three-loop contributions – given by the
diagrams in the second row of Figure 6.3 – are the most computationally challenging.
The Dirac traces have been evaluated with both TRACER and Package-X. We use the
code FIRE [377–379] to find IBP relations [380] between the three-loop integrals and
to reduce them to a set of master integrals via the Laporta algorithm [381]. The
relevant master integrals have been computed analytically in [363,382].

The renormalised NLO correlators are given by

K
(1)
Q̃i

= K
(1),bare
Q̃i

+ 1
2ϵ

[(
2γ̃(0)

ȷ̃ δij + γ̃
(0)
Q̃iQ̃j

)
K

(0)
Q̃j

+ γ̃
(0)
Q̃iẼj

K
(0)
Ẽj

]
. (6.3.14)

where γ̃(0)
ȷ̃ = −3CF is the LO anomalous dimension of the currents ȷ̃±. The con-

tributions from the evanescent operators modify the double discontinuities of the
correlators by a finite amount and introduce a dependence in the correlator on the

1As discussed below the sum rule reproduces the VSA at LO. Therefore the factors AQ̃i
appear

at leading order in the expansion of the results in ϵ. However, the correlator is computed in d
dimensions and corrections can appear. We find that this happens only for Q̃1 where the contraction
of the two γ matrices inside the trace yields a d-dimensional factor.
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choice of basis of the HQET evanescent operators. This dependence propagates to the
HQET bag parameters extracted in the sum rule and cancels with the HQET evanes-
cent scheme dependence of the matching coefficients (as seen in Equation 6.2.10) in
the matching equation (Equation 6.2.22) for the QCD bag parameters.

Methods to compute the double discontinuities of the correlators have been described
in [363,383]. The results take the form

ρpert
Q̃i

(ω1, ω2) = AQ̃i
ρΠ(ω1)ρΠ(ω2) + ∆ρQ̃i

, (6.3.15)

where

ρΠ(ω) ≡ Π(ω + i0)− Π(ω − i0)
2πi

= Ncω
2

2π2

[
1 + αsCF

4π

(
17 + 4π2

3 + 3 ln µ2

4ω2

)
+O

(
α2

s

)] (6.3.16)

is the discontinuity of the two-point correlator (Equation 6.3.13) up to two-loop
order [384–386]. The non-factorizable contributions are

∆ρQ̃i
≡ NcCF

4
ω2

1ω
2
2

π4
αs

4πrQ̃i
(x, Lω) , (6.3.17)

where x = ω2/ω1, Lω = ln(µ2/(4ω1ω2)) and we obtain

rQ̃1
(x, Lω) = 8− a2

2 −
8π2

3 ,

rQ̃2
(x, Lω) = 25 + a1

2 −
4π2

3 + 6Lω + ϕ(x) ,

rQ̃4
(x, Lω) = 16− a3

4 −
4π2

3 + 3Lω + ϕ(x)
2 ,

rQ̃5
(x, Lω) = 29− a3

2 −
8π2

3 + 6Lω + ϕ(x) ,

(6.3.18)

where

ϕ(x) =

x
2 − 8x+ 6 ln(x), x ≤ 1 ,

1
x

2 − 8
x
− 6 ln(x), x > 1 .

(6.3.19)

Taking a2 = −4 in accordance with [363] we reproduce their result for rQ̃1
up to a

factor of 2 which is due to the different normalization of the HQET operators.

6.3.3 Sum rule for the bag parameters

Inserting the decomposition given in Equation 6.3.15 into the sum rule in Equa-
tion 6.3.9 allows us to subtract the factorized contribution, by making use of the
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sum rule [384–386] for the HQET decay constant

F 2(µ)e− Λ
t =

ωc∫
0

dωe− ω
t ρΠ(ω) + . . . . (6.3.20)

The factorizable part of Equation 6.3.15 exactly reproduces the VSA for the matrix
elements. After subtracting it, we obtain a sum rule for the deviation ∆BQ̃ = BQ̃−1
from the VSA. In the traditional sum rule approach this gives

∆BQ̃i
= 1
AQ̃i

F (µ)4

ωc∫
0

dω1 dω2 e
Λ−ω1

t1
+ Λ−ω2

t2 ∆ρQ̃i
(ω1, ω2) (6.3.21)

= 1
AQ̃i

ωc∫
0
dω1 dω2 e

− ω1
t1

− ω2
t2 ∆ρQ̃i

(ω1, ω2)(
ωc∫
0
dω1 e

− ω1
t1 ρΠ(ω1)

)(
ωc∫
0
dω2 e

− ω2
t2 ρΠ(ω2)

) . (6.3.22)

The stability of the sum rule in Equation 6.3.22 can then be assessed numerically by
variation of the cutoff ωc and the Borel parameters ti (see e.g. [383,385]).

In our analysis we instead follow a different approach that allows us to obtain analytic
results for the HQET bag parameters. We exploit the fact that the dispersion relation
given in Equation 6.3.3 is not violated by the introduction of an arbitrary weight
function w(ω1, ω2) in the integration, as long as w is chosen such that no additional
discontinuities appear in the complex plane.1 In the presence of such a weight
function w, the square of the sum rule for the decay constant (Equation 6.3.20) takes
the form

F 4(µ)e− Λ
t1

− Λ
t2w(Λ,Λ) =

ωc∫
0

dω1 dω2 e
− ω1

t1
− ω2

t2 w(ω1, ω2)ρΠ(ω1)ρΠ(ω2) + . . . . (6.3.23)

Since the condensate contributions have already been taken into account in [363,364]
and are in the sub-percent range we only focus on the perturbative contribution to
the sum rule. By using Equation 6.3.23 with the choice2

wQ̃i
(ω1, ω2) =

∆ρpert
Q̃i

(ω1, ω2)
ρpert

Π (ω1)ρpert
Π (ω2)

= CF

Nc

αs

4π rQ̃i
(x, Lω) , (6.3.24)

we can remove the integration in Equation 6.3.21 altogether and find the simple
1The arbitrariness of the weight function is a mathematical statement which holds for the

dispersion relation. The sum rule in Equation 6.3.7 does however also assume quark-hadron duality
and breaks down if pathological weight functions are used, e.g. rapidly oscillating ones. In the
following we only use slowly varying weight functions with support on the complete integration
domain.

2This choice, while technically original, is a relatively straightforward modification of the previous
usage of weight functions in sum rule calculations.
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result
∆Bpert

Q̃i
(µρ) = CF

NcAQ̃i

αs(µρ)
4π rQ̃i

(
1, log µ2

ρ

4Λ2

)
. (6.3.25)

This sum rule is valid at a low scale µρ ∼ 2ωi ∼ 2Λ where the logarithms that appear
in the spectral functions are small. From there we have to evolve the results for the
bag parameters up to the scale µm ∼ mb where the matching (which we described
in Section 6.2.3) to the QCD bag parameters can be performed without introducing
large logarithms. From Equation 6.2.15 and the running of the HQET operators
and decay constant

d ⃗̃Q

d lnµ = −ˆ̃γQ̃Q̃
⃗̃Q ,

dF (µ)
d lnµ = −γ̃ȷ̃F (µ) , (6.3.26)

we obtain the RG equations for the HQET bag parameters

dB⃗Q̃

d lnµ = −
(
Â−1

Q̃
ˆ̃γQ̃Q̃ÂQ̃ − 2γ̃ȷ̃

)
B⃗Q̃ ≡ −ˆ̃γB̃B⃗Q̃ , (6.3.27)

where ÂQ̃ is the diagonal matrix with entries AQ̃ given in Equation 6.2.16. The LO
solution to Equation 6.3.27 takes the form

B⃗Q̃(µ) = Û
(0)
B̃

(µ, µ0) B⃗Q̃(µ0) . (6.3.28)

Here Û (0)
B̃

is the LO evolution matrix

Û
(0)
B̃

(µ, µ0) =
(
αs(µ)
αs(µ0)

) ˆ̃γ(0)
B̃

2β0
= V̂

(
αs(µ)
αs(µ0)

) ⃗̃γ
(0)
B̃

2β0
V̂ −1 , (6.3.29)

with V̂ the transformation that diagonalizes the ADM ˆ̃γ(0)
B̃

ˆ̃γ(0),D
B̃

= V̂ −1 ˆ̃γ(0)
B̃
V̂ , (6.3.30)

and the vector ⃗̃γ(0)
B̃

contains the diagonal entries of ˆ̃γ(0),D
B̃

. As part of our error
analysis we allow the matching scale µm to differ from mb(mb) and then evolve the
QCD bag parameters back to mb(mb). The LO evolution matrix has the same form
as its HQET counterpart (Equation 6.3.29) while the anomalous dimension matrix
of the QCD bag parameters is given by

γ̂B = Â−1
Q γ̂QQÂQ . (6.3.31)

We only resum the leading logarithms because the NLO anomalous dimensions in
HQET are currently not known. This implies that dependence of the QCD matrix
elements on the basis of evanescent HQET operators does not fully cancel. As
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discussed below, we use variation of the parameters ai to estimate the effects of NLL
resummation. We expect this effect to be small since the scales µρ and µm are not
very widely separated and so ln(µm/µρ) ∼ O (1).

6.4 Results for ∆B = 2 operators

We describe our analysis in Section 6.4.1, then give the results for the bag parameters,
together with a comparison with other works, in Section 6.4.2. In Section 6.4.3 the
results for the mixing observables with our bag parameters are shown.

6.4.1 Details of the analysis

We determine the HQET bag parameters from the sum rule in Equation 6.3.25 with
the central values µρ = 1.5 GeV and Λ = 0.5 GeV. We use RunDec [387,388] to evolve
αs(MZ) = 0.1181 [389] down to the bottom quark MS mass mb(mb) = 4.203 GeV
[390, 391] with five-loop accuracy [392–396]. From there we use two-loop running
with four and five flavours in HQET and QCD, respectively. The decoupling of the
bottom quark is trivial at this accuracy.

The HQET bag parameters are then evolved from the scale µρ up to the scale
µm = mb(mb) using Equation 6.3.28. There the matching to the QCD bag parameters
is performed. The factors CQiQ̃j

(µ)/C2(µ) are expanded in αs and truncated after
the linear term. We also expand the ratios AQ̃j

/AQi
strictly in Λ/mb and mq/mb.

Up to higher order perturbative corrections, this is equivalent to the use of the VSA
for the power-suppressed HQET operators that arise in the QCD-HQET matching
(Equation 6.2.4).

A small dependence on the choice of basis for the evanescent HQET operators remains
in the QCD bag parameters because the RG evolution of the HQET bag parameters
is only known at the LL level. We have checked that the ai-dependence fully cancels
when the scales µρ and µm are identified and the matching (Equation 6.2.22) is
strictly expanded in the strong coupling, which serves as a strong cross-check of
our calculation. For different scales µρ and µm the remaining ai-dependence can be
removed by a future computation of the NLO ADMs.

Finally, we convert the QCD bag parameters BQ to the usual convention BQ de-
fined in Equation 6.2.14. This is done by expanding the ratios of the prefactors
AQ/AQ(mb(mb)) in αs and truncating them after the linear term.

To estimate the errors of the bag parameters we take the following sources of uncer-
tainties into account:
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• The uncertainty in the analytic form of the sum rule given in Equation 6.3.25
is estimated through variation of the residual mass Λ in the range 0.4–0.6 GeV.
In addition we include an intrinsic sum rule uncertainty of 0.02 in the HQET
bag parameters. This numerical value is determined by comparing the analytic
values from Equation 6.3.25 with results obtained from the traditional sum
rule approach (Equation 6.3.22).

• The condensate contributions to BQ̃1
and BQ̃2

are taken from [364] and are in
the sub-percent range. For BQ̃4

and BQ̃5
, which have not been determined in

that work, we therefore add an additional error of ±0.01 to the perturbative
results.

• To assign an uncertainty from the unknown α2
s contributions to the spectral

densities we vary the scale µρ in the range 1–2 GeV.

• As discussed above we implicitly include higher-order corrections in 1/mb in
the VSA approximation. The non-factorizable corrections of this kind are of
the order (αs/π)× (Λ/mb) ∼ 0.01, which we take as an estimate for the error.

• Higher order perturbative contributions to the QCD-HQET matching relation
and the RG evolution of the bag parameters are estimated through variation of
µm in the range 3–6 GeV and variation of the ai in the range ±10. The QCD
bag parameters are then evolved to the central scale mb(mb) with LL accuracy
as described in Section 6.3.3. The variation of µm by the usual factors of 1/2
and 2 would lead to a doubling of the matching uncertainty estimates given
below, which would significantly exceed the effect of the NLO matching at the
central scale. We therefore use a less conservative range but cannot exclude
larger matching effects at NNLO at present, while a full calculation is not
available.

• The parametric uncertainty from αs(MZ) is in the 0.1 % range and is hence
neglected.

The individual errors are then summed in quadrature. We also divide the uncertain-
ties into a sum rule uncertainty which contains the first three items in the list above
and a matching uncertainty which contains the remaining three.
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6.4.2 Results and comparison

From the sum rule we obtain the HQET bag parameters

BQ̃1
(1.5 GeV) = 0.910+0.023

−0.031

= 0.910+0.000
−0.000(Λ) +0.020

−0.020(intr.) +0.005
−0.005(cond.) +0.011

−0.024(µρ) ,
BQ̃2

(1.5 GeV) = 0.923+0.029
−0.035

= 0.923+0.016
−0.020(Λ) +0.020

−0.020(intr.) +0.004
−0.004(cond.) +0.013

−0.020(µρ) ,
BQ̃4

(1.5 GeV) = 1.009+0.024
−0.023

= 1.009+0.007
−0.006(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.003

−0.003(µρ) ,
BQ̃5

(1.5 GeV) = 1.004+0.030
−0.028

= 1.004+0.020
−0.016(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.004

−0.006(µρ) ,

(6.4.1)

where we have set ai = 0 in order to uniquely specify a basis of evanescent HQET
operators. The individual uncertainties were determined as described above and
added in quadrature. The corrections to the VSA for scales in the range 1–2 GeV are
at the level of 5–11 % for Q̃1,2 and 0–4 % for Q̃4,5. We find that the total sum rule
uncertainties of the bag parameters are quite small. This is because the sum rule
(Equation 6.3.25) is formulated for the deviation from the VSA and the substantial
relative uncertainties of the sum rule itself are small in comparison with the VSA
contribution to the bag parameters.

Following the steps outlined in Section 6.4.1 we obtain the following results for the
QCD bag parameters

BQ1(mb(mb)) = 0.868+0.051
−0.050

= 0.868+0.021
−0.029(sum rule) +0.046

−0.041(matching) ,
BQ2(mb(mb)) = 0.842+0.078

−0.073

= 0.842+0.028
−0.033(sum rule) +0.073

−0.065(matching) ,
BQ3(mb(mb)) = 0.818+0.162

−0.159

= 0.818+0.126
−0.132(sum rule) +0.102

−0.087(matching) ,
BQ4(mb(mb)) = 1.049+0.092

−0.084

= 1.049+0.025
−0.025(sum rule) +0.089

−0.080(matching) ,
BQ5(mb(mb)) = 1.073+0.083

−0.075

= 1.073+0.028
−0.026(sum rule) +0.078

−0.070(matching) .

(6.4.2)

The evolution to the scale mb(mb)) and the matching to QCD increase the deviations
from the VSA to up to 18 %. With the exception of BQ3 the uncertainties of the
bag parameters are dominated by the matching. A detailed list of the uncertainties
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Figure 6.4: Comparison of our results for the ∆B = 2 bag pa-
rameters at the scale mb(mb) to the lattice values of
HPQCD’07 [358], ETM’14 [181] and FNAL/MILC’16
[217], the FLAG averages [161] and the sum rule result
GKMP’16 [363].

can be found in Appendix G.2.

In Figure 6.4 we compare our results to other recent determinations from lattice
simulations [161,181,217,358] and sum rules [363]. We find excellent agreement for
the bag parameters of the operators Q1, Q2 and Q3. The uncertainties of our sum rule
analysis are similar to those obtained on the lattice. We observe that the uncertainty
of the bag parameter BQ3 is significantly larger than those of BQ1 and BQ2 . This
is related to the small colour factor AQ3 = 1/3 +O (1/mb) which implies that the
sum rule uncertainties get enhanced by the factors AQ̃1

/AQ3 = 8 + O (1/mb) and
AQ̃2

/AQ3 = −5 +O (1/mb) when we match from HQET to QCD (Equation 6.2.22) –
the absolute sum rule uncertainty of the matrix element of Q3 is of a similar size as
that of the other operators.

The tiny difference of the central value of BQ1 compared to the sum rule determina-
tion [363] is mostly due to different scale choices. Since BQ1 does not run at the LL
order, [363] sets all scales equal to the bottom quark mass. We on the other hand,
evaluate the sum rule at a lower scale µρ ∼ 1.5 GeV where the strong coupling is
larger and causes a bigger deviation from the VSA.

Only two previous lattice results [181, 217] exist for the matrix elements of the
operators Q4 and Q5, and they differ at the level of more than two sigma. Our
results are in very good agreement with those of [217] and show an even higher level
of tension with [181] in BQ5 .
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6.4.3 Bs and Bd mixing observables

In this section, we consider the observables ∆Ms, ∆Γs, and as
sl (see Equations 2.4.16

and 2.5.2 for definitions). Using our values for the bag parameters, we give predictions
for these observables and compare them to the current experimental averages given
by HFLAV [339]. In our sum rule determination we have assumed the light quark q
in the Bq meson to be massless – the corrections to Equation 6.3.25 from a non-zero
strange quark mass are of the order (αs/π)(ms/(2Λ)) ≈ 0.02, and so we add another
uncertainty of ±0.02 in quadrature to the results (Equation 6.4.2) to account for
these unknown corrections. (This point has recently been discussed in more detail
in [397].) The effect on the total uncertainty is small.

We find excellent agreement between experiment and the SM prediction for the mass
difference:

∆M exp
s = (17.757± 0.021) ps−1 ,

∆MSM
s =

(
18.1+1.9

−1.8

)
ps−1

=
(
18.1+1.3

−1.2(had.)± 0.1(scale)+1.4
−1.3(param.)

)
ps−1 ,

(6.4.3)

where we have used the input values given in Appendix G.2. The 10 % uncertainty of
the SM prediction is dominated by the hadronic and parametric CKM uncertainties
which are of the same size. We also give results for the mass difference in the Bd

system

∆M exp
d = (0.5065± 0.0019) ps−1 ,

∆MSM
d = (0.61± 0.09) ps−1

= (0.61± 0.04(had.)± 0.00(scale)± 0.08(param.)) ps−1 ,

(6.4.4)

where the agreement is at the level of 1.1σ.

We determine the decay rate difference and the semileptonic decay asymmetry in the
MS, PS [398], 1S [399] and kinetic [400] mass schemes with the mass values given in
Appendix G.2. The MS charm quark mass at the scale of the bottom quark mass
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has been used throughout. We obtain

∆Γexp
s = (0.090± 0.005) ps−1 ,

∆ΓMS
s =

(
0.080+0.018

−0.023

)
ps−1

=
(
0.080± 0.016(had.)+0.006

−0.015(scale)± 0.006(param.)
)

ps−1 ,

∆ΓPS
s =

(
0.079+0.020

−0.026

)
ps−1

=
(
0.079± 0.018(had.)+0.007

−0.018(scale)± 0.006(param.)
)

ps−1 ,

∆Γ1S
s =

(
0.075+0.021

−0.028

)
ps−1

=
(
0.075± 0.019(had.)+0.008

−0.020(scale)± 0.006(param.)
)

ps−1 ,

∆Γkin
s = (0.076+0.020

−0.027) ps−1

=
(
0.076± 0.018(had.)+0.008

−0.019(scale)± 0.006(param.)
)

ps−1 ,

(6.4.5)

and
as,exp

sl = (−60± 280)× 10−5 ,

as,MS
sl = (2.1± 0.3)× 10−5

=
(
2.1± 0.1(had.)+0.0

−0.1(scale)+0.2
−0.3(param.)

)
× 10−5 ,

as,PS
sl = (2.0+0.2

−0.3)× 10−5

=
(
2.0± 0.1(had.)+0.0

−0.1(scale)± 0.2(param.)
)
× 10−5 ,

as,1S
sl = (2.0+0.2

−0.3)× 10−5

=
(
2.0± 0.0(had.)+0.0

−0.1(scale)± 0.2(param.)
)
× 10−5 ,

as,kin
sl = (2.0+0.2

−0.3)× 10−5

=
(
2.0± 0.1(had.)+0.0

−0.1(scale)± 0.2(param.)
)
× 10−5 .

(6.4.6)

The different mass schemes are in good agreement with each other and we adopt the
PS mass scheme as our central result. The SM value for the decay rate difference is in
good agreement with the experimental average. The theory uncertainty is currently
at the level of 30 %, and is dominated by the matrix elements of the dimension-
seven operators, in particular the VSA estimate BR2 = 1.0± 0.5 which contributes
±0.016 ps−1 to the uncertainty. The second largest contribution is the scale variation.
A detailed overview is given in Appendix G.2. To achieve a significant reduction of
the combined uncertainties, a determination of the dimension-seven matrix elements
and a NNLO calculation of the perturbative matching are needed (see [397,401] for
the first work in this direction).

The experimental uncertainty for the semileptonic decay asymmetry is two orders
of magnitude larger than the SM prediction, making it a clear null test for the
SM [402], while the decay rate difference and the semileptonic decay asymmetry in
the Bd system have not yet been measured. The current experimental averages and
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our predictions are

∆Γexp
d = (−1.3± 6.6)× 10−3 ps−1 ,

∆ΓPS
d =

(
2.7+0.8

−0.9

)
× 10−3 ps−1

=
(
2.7+0.6

−0.6(had.)+0.2
−0.6(scale)+0.4

−0.4(param.)
)
× 10−3 ps−1 ,

ad,exp
sl = (−21± 17)× 10−4 ,

ad,PS
sl = (−4.0± 0.5)× 10−4

=
(
−4.0± 0.1(had.)+0.2

−0.1(scale)± 0.5(param.)
)
× 10−4 .

(6.4.7)

The results obtained in different mass schemes are compatible and the relative
uncertainties of the predictions are of the same magnitude as in the Bs system.

6.5 ∆B = 0 operators and ratios of B meson
lifetimes

The dominant contribution to lifetime differences between the mesons Bq with q =
u, d, s is due to spectator effects which first appear as dimension-six contributions in
the HQE (see the bullet points in Section 2.2). The NLO Wilson coefficients have
been computed in [215,403,404]. The dimension-seven contributions are known at
LO [230,405]. We define the set of operators in Section 6.5.1 and present the results
for their bag parameters in Section 6.5.2. The updated HQE results for the B meson
lifetime ratios are given in Section 6.5.3.

6.5.1 Operators and matrix elements

The following QCD operators enter at dimension six:

Qq
1 = (bγµ(1− γ5)q)(qγµ(1− γ5)b) ,

Qq
2 = (b(1− γ5)q)(qγµ(1 + γ5)b) ,

T q
1 = (bγµ(1− γ5)taq)(qγµ(1− γ5)tab) ,
T q

2 = (b(1− γ5)taq)(q(1 + γ5)tab) .

(6.5.1)

On the HQET side they match onto

Q̃q
1 = (h̄γµ(1− γ5)q)(qγµ(1− γ5)h) ,

T̃ q
1 = (h̄γµ(1− γ5)taq)(qγµ(1− γ5)tah) ,

Q̃q
2 = (h̄(1− γ5)q)(q(1 + γ5)h) ,

T̃ q
2 = (h̄(1− γ5)taq)(q(1 + γ5)tah) .

(6.5.2)
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j− j†−

q

Q̃

q′

h(−) h(−)

Figure 6.5: Leading order eye contraction.

Our basis of evanescent operators and the results of the matching computation can
be found in Appendix G.1.2. We only consider the isospin-breaking combinations of
operators

Qi = Qu
i −Qd

i , Ti = T u
i − T d

i , (6.5.3)

and their analogues in HQET. This implies that the eye contractions displayed in
Figure 6.5 cancel in the limit of exact isospin symmetry.

The matrix elements are

⟨Qi(µ)⟩ = Ai f
2
BM

2
B Bi(µ) , ⟨Ti(µ)⟩ = Ai f

2
BM

2
B ϵi(µ) , (6.5.4)

where ⟨Q⟩ = ⟨B−|Q|B−⟩, the coefficients read

A1 = 1 , A2 = M2
B

(mb +mq)2 , (6.5.5)

and Bi = 1, ϵi = 0 corresponds to the VSA approximation, matching our definitions
in Equations C.0.3 and C.0.4. Similarly we obtain for the HQET operators

⟨⟨Q̃i(µ)⟩⟩ = Ãi F
2(µ) B̃i(µ) , ⟨⟨T̃i(µ)⟩⟩ = Ãi F

2(µ) ϵ̃i(µ) , (6.5.6)

where
Ã1 = 1 , Ã2 = 1 . (6.5.7)

6.5.2 Results for the spectral functions and bag parameters

For the ∆B = 0 operators we use the same conventions for the decomposition of
the three-point correlator and the sum rule as for the ∆B = 2 operators above. We
obtain for the double discontinuities of the non-factorizable contributions

rQ̃i
(x, Lω) = 0 ,

rT̃1
(x, Lω) = −8 + a1

8 + 2π2

3 −
3
2Lω −

1
4ϕ(x) ,

rT̃2
(x, Lω) = −29

4 + a2

8 + 2π2

3 −
3
2Lω −

1
4ϕ(x) .

(6.5.8)
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The leading condensate contributions have been determined in [365]. From their
results we deduce that

ρcond
Q̃i

(ω1, ω2) = 0 + . . . ,

ρcond
T̃1

(ω1, ω2) =

〈
gsq̄σµνG

µνq
〉

128π2 [δ(ω1) + δ(ω2)] + . . . ,

ρcond
T̃2

(ω1, ω2) = − 1
64π2

[〈
αs

π
G2
〉

+
〈
gsq̄σµνG

µνq
〉

[δ(ω1) + δ(ω2)]
]

+ . . . ,

(6.5.9)

where the dots indicate factorizable contributions, αs corrections and contributions
from condensates of dimension six and higher. To determine the condensate con-
tributions to the HQET parameters we have used the traditional form of the sum
rule, because the appearance of the δ-functions prevents the application of a weight
function analogous to Equation 6.3.24. We find

∆B̃ cond
i (1.5 GeV) = 0.000± 0.002 ,

∆ϵ̃ cond
1 (1.5 GeV) = −0.005± 0.003 ,

∆ϵ̃ cond
2 (1.5 GeV) = 0.006± 0.004 .

(6.5.10)

The associated errors were determined from an uncertainty of ±0.002 for missing
higher-dimensional condensates, variations of the Borel parameters and the contin-
uum cutoff and the uncertainty in the condensates〈

αs

π
G2
〉

= (0.012± 0.006) GeV4 ,〈
gsq̄σµνG

µνq
〉

= (−0.011± 0.002) GeV5 .
(6.5.11)

We note that our results for the contributions of the condensate corrections to the
deviation of the bag parameters from the VSA are much smaller than those of [365].
This is mostly due to the choice of the Borel parameter. We use t ∼ 1 GeV where
the sum rule is stable against variations of the Borel parameter, while the Borel
region of [365] translates to t = 0.35–0.5 GeV, where the sum rule becomes unstable
as can be seen in their plots. Our choice is also preferred by other modern sum rule
analyses [364,406,407].

Following the same analysis strategy for the perturbative contributions as described
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for the ∆B = 2 bag parameters in Section 6.4.1, we find the HQET bag parameters

B̃1(1.5 GeV) = 1.000+0.020
−0.020

= 1.000+0.000
−0.000(Λ)+0.020

−0.020(intr.)+0.002
−0.002(cond.)+0.000

−0.001(µρ) ,
B̃2(1.5 GeV) = 1.000 +0.020

−0.020

= 1.000+0.000
−0.000(Λ)+0.020

−0.020(intr.)+0.002
−0.002(cond.)+0.000

−0.001(µρ) ,
ϵ̃1(1.5 GeV) = −0.016 +0.021

−0.022

= −0.016+0.007
−0.008(Λ)+0.020

−0.020(intr.)+0.003
−0.003(cond.)+0.003

−0.003(µρ) ,
ϵ̃2(1.5 GeV) = 0.004+0.022

−0.022

= 0.004+0.007
−0.008(Λ)+0.020

−0.020(intr.)+0.004
−0.004(cond.)+0.002

−0.002(µρ) .

(6.5.12)

where we have set a1 = a2 = 0. At the considered order, there is no deviation from
the VSA for the bag parameters of the colour singlet operators, as can be seen from
Equations 6.5.8 and 6.5.9, because the corresponding colour factors vanish. The
deviations for the colour octet operators are in the range 0–2 % for scales µρ between
1 GeV and 2 GeV. In QCD we obtain

B1(µ = mb(mb)) = 1.028+0.064
−0.056

= 1.028+0.019
−0.019(sum rule)+0.061

−0.053(matching) ,
B2(µ = mb(mb)) = 0.988+0.087

−0.079

= 0.988+0.020
−0.020(sum rule)+0.085

−0.077(matching) ,
ϵ1(µ = mb(mb)) = −0.107+0.028

−0.029

= −0.107+0.023
−0.024(sum rule)+0.015

−0.017(matching) ,
ϵ2(µ = mb(mb)) = −0.033+0.021

−0.021

= −0.033+0.018
−0.018(sum rule)+0.011

−0.011(matching) .

(6.5.13)

The RG evolution and the perturbative matching cause larger deviations from the
VSA, but these do not exceed 11 %.

In Figure 6.6 we compare our results to previous ones from sum rules [365,366] and
the lattice [216,408]. The results of [365,366,408] were obtained within HQET. For
the comparison we match their results to QCD at tree level while expanding factors
of Ãi/AQ(mb(mb)) in 1/mb. As discussed in Section 6.4.1 this effectively includes
1/mb corrections in the VSA approximation.

The Bi are in good agreement, with the exception of the value for B2 from [216],
which differs from the other results and the VSA by a factor of about two. While the
other sum rule results for the ϵi agree reasonably well with ours, the lattice results
for ϵ1 show significantly smaller deviations from the VSA. The similarity between
the sum rule results [365,366] and ours appears to be mostly coincidental, because
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Figure 6.6: Comparison of our results for the ∆B = 0 bag parame-
ters at the scale mb(mb) to the HQET sum rule results
BLLS’98 [365] and CY’98 [366], and the lattice values
of UKQCD’98 [408] and Becirevic’01 [216].

of the following reasons. We find that the bulk of the deviation from the VSA in
the ϵi is due to the RG running and matching, while the latter was not considered
in [365,366]. In their analyses, there is instead a sizeable deviation at the hadronic
scale, originating from the condensate contributions. In comparison with [365] we
find that this is due to the choice of very small values of the Borel parameter which
lie outside of the stability region as discussed above. To properly assess the origin of
the smallness of the lattice results [216,408] for the ϵi would need comparison with
a state-of-the-art lattice simulation which currently does not exist, as many of the
approximations made in [216,408], like quenching, have since been reappraised.

6.5.3 Results for the lifetime ratios

Using our results in Equation 6.5.13 for the dimension-six bag parameters, and the
VSA for the dimension-seven bag parameters (as defined in [230]) with uncertainties
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ρi = 1± 1/12, σi = 0± 1/6, we find

τ(B+)
τ(Bd)

∣∣∣∣∣
exp

= 1.076± 0.004 ,

τ(B+)
τ(Bd)

∣∣∣∣∣
MS

= 1.078+0.021
−0.023

= 1.078+0.020
−0.019(had.)+0.002

−0.011(scale)± 0.006(param.) ,
τ(B+)
τ(Bd)

∣∣∣∣∣
PS

= 1.082+0.022
−0.026

= 1.082± 0.021(had.)+0.000
−0.015(scale)± 0.006 (param.) ,

τ(B+)
τ(Bd)

∣∣∣∣∣
1S

= 1.082+0.023
−0.028

= 1.082+0.022
−0.021(had.)+0.001

−0.017(scale)+0.007
−0.006(param.) ,

τ(B+)
τ(Bd)

∣∣∣∣∣
kin

= 1.081+0.022
−0.027

= 1.081± 0.021(had.)+0.001
−0.016(scale)± 0.006(param.) ,

(6.5.14)

as our predictions for the lifetime ratio – showing excellent agreement with the
experimental value and very good consistency between different mass schemes. The
biggest contributions to the total uncertainty are still from the hadronic matrix
elements, specifically from ϵ1 with±0.015 and σ3 with±0.013. In the future, they can
be reduced with an independent determination of the dimension-six bag parameters
and a sum-rule determination of the dimension-seven bag parameters.

We also update the prediction for the lifetime ratio τ(Bs)/τ(Bd) in the MS scheme,
by using Equation 117 from [141]:

τ(Bs)
τ(Bd)

∣∣∣∣∣
exp

= 0.994± 0.004 ,

τ(Bs)
τ(Bd)

∣∣∣∣∣
MS

= 0.9994± 0.0025

= 0.9994± 0.0014(had.)± 0.0006(scale) ± 0.0020(1/m4
b) ,

(6.5.15)

where we have added an uncertainty estimate for the spectator effects at order 1/m4
b

which have not been considered in [141]. With respect to our determination in
Chapter 3, the difference between the theory prediction and the experimental value
for τ(Bs)/τ(Bd) is reduced from 2.5σ to 1.1σ.
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6.6 Matrix elements for charm and the D+ − D0

lifetime ratio

The HQET sum rule analysis can easily be adapted to the charm sector. It is common
to quote the matrix elements for the charm sector at the scale 3 GeV instead of
the charm quark mass (see [268, 409, 410]), and we adopt that convention for ease
of comparison. Consequently we also use 3 GeV as the central matching scale. In
the error analysis it is varied between 2 GeV and 4 GeV. To account for the lower
value of charm quark mass we assume that the uncertainty due to power corrections
is 0.03 instead of 0.01 for the bottom sector. Otherwise, we use the same analysis
strategy as in the bottom sector which is outlined in Section 6.4.1.

6.6.1 Matrix elements for D mixing

The latest lattice QCD study [410] for D mixing only gives results for the matrix
elements and not for the bag parameters. We do the same here and obtain, using
the value of the D meson decay constant from Appendix G.2,

⟨Q1(3 GeV)⟩ / GeV4 = 0.265+0.024
−0.021

= 0.265+0.006
−0.010(s.r.) +0.019

−0.014(matching)+0.013
−0.012(fD) ,

−⟨Q2(3 GeV)⟩ / GeV4 = 0.502 +0.124
−0.092

= 0.502+0.094
−0.078(s.r.)+0.076

−0.044(matching)+0.024
−0.023 (fD) ,

⟨Q3(3 GeV)⟩ / GeV4 = 0.135 +0.037
−0.029

= 0.135 +0.031
−0.026(s.r.)+0.019

−0.010(matching)+0.006
−0.006(fD) ,

⟨Q4(3 GeV)⟩ / GeV4 = 0.792 +0.175
−0.122

= 0.792 +0.116
−0.093(s.r.)+0.125

−0.070 (matching)+0.038
−0.037(fD) ,

⟨Q5(3 GeV)⟩ / GeV4 = 0.340 +0.060
−0.039

= 0.340 +0.027
−0.021(s.r.)+0.051

−0.029 (matching)+0.016
−0.016(fD) .

(6.6.1)

The relative uncertainties in the charm sector are consistently larger than those in
the bottom sector because of larger perturbative corrections due to a larger value of
αs at the smaller scales and larger power corrections. This effect is most pronounced
for Q2, Q4 and Q5 where the relative uncertainty is larger by a factor of order two.
In the matrix elements we have an additional uncertainty from the value of the decay
constant which is added in quadrature.

We compare our results to those from the lattice in Figure 6.7. There is a consistent
hierarchy with decreasing values from the results of the FNAL/MILC collaboration
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Figure 6.7: Comparison of our results for the ∆C = 2 matrix
elements at the scale 3 GeV to the lattice values of
ETM’14 [268], ETM’15 [409] and FNAL/MILC’17 [410].
The values for the matrix elements of the ETM collab-
oration are extracted from Figure 16 of [410].

[410], those of the ETM collaboration [268,409] and ours. The only exception is the
value of ⟨Q5⟩ from [409] which lies below ours. If we use the lattice average [389] for
the decay constant f lattice

D = (211.9± 1.1) MeV in place of the experimental average
f exp

D = (203.7± 4.8) MeV [389], we find very good agreement between our results
and those of ETM and the remaining differences with respect to the FNAL/MILC
results are comfortably below 2σ. We prefer the experimental average of the decay
constant since it is in significantly better agreement with recent sum rule results [406,
407,411,412]. On the other hand, using the lattice value yields a more meaningful
comparison with the lattice results since the quantities we determine with the sum
rule are the bag parameters and the decay constant cancels out in the comparison if
the same value is used on both sides. We therefore conclude that our sum rule results
for the non-factorizable contributions to the bag parameters are in good agreement
with lattice simulations. An investigation of the differences in the numerical values
of the decay constant is beyond the scope of this work.
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6.6.2 Matrix elements for D lifetimes and τ (D+)/τ (D0 )

Our results for the ∆C = 0 bag parameters are

B1(3 GeV) = 0.902+0.077
−0.051

= 0.902+0.018
−0.018(sum rule)+0.075

−0.048(matching) ,
B2(3 GeV) = 0.739+0.124

−0.073

= 0.739+0.015
−0.015(sum rule)+0.123

−0.072(matching) ,
ϵ1(3 GeV) = −0.132+0.041

−0.046

= −0.132+0.025
−0.026(sum rule)+0.033

−0.038(matching) ,
ϵ2(3 GeV) = −0.005+0.032

−0.032

= −0.005+0.011
−0.012(sum rule)+0.030

−0.030(matching) .

(6.6.2)

While the uncertainties in B1,2 are similar to those in the B sector we find that
those in ϵ1,2 are larger by about 50 %. The latter ones are dominated by the non-
factorizable power correction and the intrinsic sum rule errors which are both based
on somewhat ad-hoc estimates. As such, our values for the uncertainties of ϵ1,2 should
be taken with a grain of salt and lattice results for the ∆C = 0 bag parameters
could provide an important consistency check. As an alternative, it should also be
possible to reduce the dominant error due to non-factorizable 1/mc corrections by
performing the operator matching up to the order 1/mc and determine the matrix
elements of the subleading HQET operators using sum rules.

We update our result for the D meson lifetime ratio from [230] using the dimension-
six bag parameters (Equation 6.6.2) and the VSA for the dimension-seven bag
parameters, with uncertainties ρi = 1± 1/12, σi = 0± 1/6. We have converted the
MS value of the charm quark mass to the PS mass at µf = 1 GeV and the 1S mass at
four-loop accuracy using RunDec. The kinetic mass at the scale 1 GeV is determined
with two-loop accuracy using an unpublished version of the QQbar_Threshold code
[413,414]. The central value for the scales µ1 and µ0 is fixed to 1.5 GeV for all mass
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schemes and varied between 1 GeV and 3 GeV. We find

τ(D+)
τ(D0 )

∣∣∣∣∣
exp

= 2.536± 0.019 ,

τ(D+)
τ(D0 )

∣∣∣∣∣
MS

= 2.61+0.72
−0.77

= 2.61+0.70
−0.66(had.)+0.12

−0.38(scale)± 0.09(param.) ,
τ(D+)
τ(D0 )

∣∣∣∣∣
PS

= 2.70+0.74
−0.82

= 2.70+0.72
−0.68(had.)+0.11

−0.45(scale)± 0.10(param.) ,
τ(D+)
τ(D0 )

∣∣∣∣∣
1S

= 2.56+0.81
−0.99

= 2.56+0.78
−0.74(had.)+0.22

−0.65(scale)± 0.10(param.) ,
τ(D+)
τ(D0 )

∣∣∣∣∣
kin

= 2.53+0.72
−0.76

= 2.53+0.70
−0.66(had.)+0.13

−0.37(scale)± 0.10(param.) ,

(6.6.3)

which is in very good agreement. The various mass schemes are all consistent
and we again take the PS result as our preferred value. The dominant sources
of uncertainties are the bag parameters ϵ1 and σ3 which both contribute ±0.5 to
the error budget of the lifetime ratio. Both errors can be reduced in the future
with a lattice determination of the dimensions-six matrix elements and a sum-rule
determination of the dimension-seven bag parameters, respectively. In the PS scheme,
the radiative corrections are of the order +27 %, and the power corrections of the
order −34 %, which indicate good convergence behaviour. We therefore conclude
that the HQE provides a good description of the lifetime ratio τ(D+)/τ(D0 ).

6.7 Summary

We have determined the matrix elements of the dimension-six ∆F = 0, 2 operators
for the bottom and charm sector using HQET sum rules. Our findings for the
∆F = 2 matrix elements are in good agreement with recent lattice [181,217,268,358,
409,410] and sum rule [363] results. Our ∆F = 0 results are the first state-of-the-art
values for the matrix elements required for B and D meson lifetime ratios. The
uncertainties in our analyses for the bag parameters are similar to those of recent
lattice determinations in the B sector and somewhat larger in the D sector. This
suggests that the uncertainty of the ∆C = 0 matrix elements could be reduced by
a lattice simulation. In most cases, the dominant errors in our approach stem from
the matching of QCD to HQET operators, see Appendix G.2. These errors could
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Figure 6.8: Comparison of our predictions for the mass and decay
rate difference in the Bs (left) and Bd (right) system with
the present experimental averages (error bars). We also
show the results obtained with the lattice results of [217]
for f 2

Bq
BQi

and the matrix element ⟨R0⟩ and the values
given in Appendix G.2 for the other input parameters.
The PS mass scheme for the bottom quarks has been
used in both cases.

be reduced substantially by performing the matching calculation at NNLO. First
steps towards this goal have recently been taken in [397,401]. Consequently, in the
future, sum rules will continue to be competitive with lattice simulations in the
determination of four quark operators.

Our predictions for the mixing observables and lifetime ratios in the B sector are
in good agreement with the experimental averages as summarized in Figures 6.8
and 6.9. In particular, the small tensions that follow from using the FNAL/MILC
results [217] for the matrix elements are not confirmed by our results. We note that
the predictions based on matrix elements from sum rules and from lattice simulations
are compatible and lead to overall uncertainties of the same size. Taking the naive
average of the bag parameters, the relative uncertainties of the mass and decay
rate difference are only reduced by about 9 % and 6 % respectively, because other
sources of uncertainties (e.g. the matrix elements of dimension-seven operators) are
dominant.

We find that the experimental value for the lifetime ratio τ(D+)/τ(D0 ) can be
reproduced within the HQE. This is a strong indication that the HQE does not
break down in the charm sector. However, due to sizeable hadronic uncertainties,
we cannot exclude large duality violations at the level of 20–30 % yet. On the other
hand, the D mixing observables are very sensitive to duality violations and might
offer a handle on a better quantitative understanding of these effects [231].
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Figure 6.9: Comparison of our predictions for the lifetime ratios of
heavy mesons with the present experimental averages.





Chapter 7

One constraint to kill them all?

7.1 Introduction

As we have discussed in Section 1.3.4, there are many intriguing anomalies in the b
quark sector, for which a variety of possible classes of new physics model have been
proposed. However, any new bs-coupling immediately gives tree-level contributions
to Bs mixing, which is strongly constrained by experiment. For many years, the SM
prediction for ∆Ms (see Equation 7.2.1) has perfectly agreed with the experimental
measurement. Recently, there has been an updated average provided by FLAG of the
important input parameter fBsB̂, and this increases the SM prediction by around
10 % to a value considerably above experiment. In this chapter, we investigate
the consequences of this updated theory prediction. We will find that the allowed
parameter space for Z ′ and leptoquark models that can explain the B anomalies
is severely reduced by this change. Remarkably, for Z ′ models the upper bound
on the Z ′ mass approaches dangerously close to the energy scales already probed
by the LHC. We finally identify some directions for model building in order to
alleviate the tension with Bs mixing. More details of the SM prediction and error
breakdown, along with a critical discussion of the theoretical uncertainties can be
found in Appendix H.

7.2 Bs mixing in the SM

Having discussed in detail the theory of Bs mixing in Section 2.4.2, we move straight
into our updated prediction of the mass difference.
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Two commonly used SM predictions of ∆Ms are

∆MSM,2011
s = (17.3± 2.6) ps−1 ,

∆MSM,2015
s = (18.3± 2.7) ps−1 ,

(7.2.1)

given in [208] and [165] respectively, which both give very good agreement with the
experimental measurement [142]:

∆M exp
s = (17.757± 0.021) ps−1 . (7.2.2)

In 2016 Fermilab/MILC presented a new calculation [217], which gave considerably
larger values for the non-perturbative input fBsB̂, resulting in values around 20 ps−1

for the mass difference [217, 218, 415, 416] which are much larger than experiment.
An independent confirmation of these large values would of course be desirable; a
first step in that direction is our work in Chapter 6 which is in agreement with
Fermilab/MILC for the bag parameters.

Using the most recent numerical inputs (as listed in Appendix H.1) we predict the
mass difference of the neutral Bs mesons to be1

∆MSM,2017
s = (20.01± 1.25) ps−1 . (7.2.3)

As in previous calculations, the dominant uncertainty in this result comes from the
lattice predictions for the non-perturbative parameters B and fBs , giving a relative er-
ror of 5.8 %, while the next-to-leading contribution comes from the uncertainty in the
CKM elements. A detailed discussion of the error budget is given in Appendix H.2.

The updated central value for the mass difference in Equation 7.2.3 is 1.8σ above
the experimental one given in Equation 7.2.2, which has profound implications for
NP models that predict sizeable positive contributions to Bs mixing. As the SM
prediction depends strongly on the non-perturbative input as well as the values
of the CKM elements, we take our values from the relevant groups in those fields,
FLAG and CKMfitter respectively. In general, the presence of BSM physics can
affect the determination of the CKM elements, and hence the SM prediction of ∆M
can in general differ from the one we use – see e.g. the case of a fourth chiral fermion
generation [417]. In the following, we will assume that NP effects do not invoke
sizeable shifts in the CKM elements. Further discussion of the lattice and CKM
dependencies can be found in Appendices H.3 and H.4.

1A more conservative determination of the SM value of the mass difference using only tree-level
inputs for the CKM parameters can be found in Equation H.4.6.
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7.3 Bs mixing beyond the SM

To determine the allowed space for NP effects in Bs mixing we compare the experi-
mental measurement of the mass difference with the SM prediction plus some NP
component:

∆M exp
s = 2

∣∣∣MSM
12 +MNP

12

∣∣∣ = ∆MSM
s

∣∣∣∣∣1 + MNP
12

MSM
12

∣∣∣∣∣ . (7.3.1)

A simple estimate shows that the change in the SM prediction from Equation 7.2.1
to Equation 7.2.3 can have a drastic impact on the size of the allowed BSM effects
on Bs mixing. For a generic NP model we can introduce the parameterisation

∆M exp
s

∆MSM
s

=
∣∣∣∣∣1 + κ

Λ2
NP

∣∣∣∣∣ , (7.3.2)

where ΛNP denotes the mass scale of the NP mediator and κ is a dimensionful
quantity which encodes NP couplings and the SM contribution. If κ > 0, which is
often the case in BSM scenarios considered in the literature,1 the 2σ bound on ΛNP

scales like

Λ2017
NP

Λ2015
NP

=

√√√√√√√
∆M

exp
s

(∆M
SM
s −2δ∆M

SM
s )2015 − 1

∆M
exp
s

(∆M
SM
s −2δ∆M

SM
s )2017 − 1

≃ 5.2 , (7.3.3)

where δ∆MSM
s denotes the 1σ error of the SM prediction. Hence in models where

κ > 0, the limit on the mass of the NP mediators is strengthened by a factor 5. On
the other hand, if the tension between the SM prediction and ∆M exp

s increases in the
future, a NP contribution with κ < 0 would be required in order to accommodate
the discrepancy.

A typical example where κ > 0 is that of a purely left-handed (LH) vector-current
operator, which arises from the exchange of a single mediator featuring real couplings
(see Section 7.3.1 for an example). In such a case, the short distance contribution to
Bs mixing is described by the effective Lagrangian

LNP
∆B=2 = −4GF√

2
(VtbV

∗
ts)2 CLL

bs

(
sLγµbL

)2
+ h.c. , (7.3.4)

where CLL
bs is a Wilson coefficient to be matched with UV models, and which enters

Equation 7.3.1 as
∆M exp

s

∆MSM
s

=
∣∣∣∣∣1 + CLL

bs

Rloop
SM

∣∣∣∣∣ , (7.3.5)

1See for example the papers by Blanke and Buras [218, 418] where they show that so-called
CMFV models always lead to κ > 0.
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where
Rloop

SM =
√

2GFM
2
W η̂2BS0(xt)

16π2 = 1.3397× 10−3 . (7.3.6)

In the rest of this chapter, we will show how the updated bound from ∆Ms impacts
the parameter space of simplified models (with κ > 0) that have been put forth to the
explain the recent discrepancies in semileptonic B physics data (Section 7.3.1), and
then discuss some model-building directions in order to achieve κ < 0 (Section 7.3.2).

7.3.1 Impact of Bs mixing on NP models for B-anomalies

A useful application of the refined SM prediction in Equation 7.2.3 is in the context
of the recent hints of LFU violation in both neutral and charged current semileptonic
B meson decays. Focussing first on neutral current anomalies, the main observables
are the LFU violating ratios (which we defined in Equation 1.3.2), together with
the angular distributions of B → K (∗)µ+µ− [69–76,86,419] and the branching ratios
of hadronic b → sµ+µ− decays [69, 71, 420]. As hinted at by various recent global
fits [95–100] (and in order to simplify the discussion), we assume NP contributions
only in purely LH vector currents involving muons. The generalisation to different
type of operators is straightforward. The effective Lagrangian for semileptonic
b → sµ+µ− transitions contains the terms

LNP
b→sµµ ⊃

4GF√
2
VtbV

∗
ts (∆Cµ

9O
µ
9 + ∆Cµ

10O
µ
10) + h.c. , (7.3.7)

with

Oµ
9 = α

4π (sLγµbL)(µ̄γµµ) , (7.3.8)

Oµ
10 = α

4π (sLγµbL)(µ̄γµγ5µ) . (7.3.9)

Assuming purely LH currents and real Wilson coefficients the best-fit of RK and RK
∗

yields (from e.g. [98]): Re(∆Cµ
9 ) = −Re(∆Cµ

10) ∈ [−0.81,−0.48] ([−1.00,−0.32])
at 1σ (2σ). Including also the data on B → K (∗)µ+µ− angular distributions and
other b → sµ+µ− observables1 improves the statistical significance of the fit, but
does not necessarily imply larger deviations of Re(∆Cµ

9 ) from zero (see e.g. [97]). In
the following we will limit ourselves to the RK and RK

∗ observables and denote this
benchmark as “R

K
(∗)”.

1These include for instance B(Bs → µ+µ−) which is particularly constraining in the case of
pseudo-scalar mediated quark transitions (see e.g. [421]).
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Z′

A paradigmatic NP model for explaining the B-anomalies in neutral currents is that
of a Z ′ dominantly coupled via LH currents. Here we focus only on the part of the
Lagrangian relevant for b → sµ+µ− transitions and Bs mixing, namely

LZ′ = 1
2M

2
Z′(Z ′

µ)2 +
(
λQ

ij d i
Lγ

µdj
L + λL

αβ ℓ
α
Lγ

µℓβ
L

)
Z ′

µ , (7.3.10)

where d i and ℓα denote down quark and charged lepton mass eigenstates, and λQ,L are
hermitian matrices in flavour space. Of course, any full-fledged (i.e. SU(2)L×U(1)Y

gauge invariant and anomaly free) Z ′ model attempting an explanation of R
K

(∗) via
LH currents can be mapped into Equation 7.3.10. After integrating out the Z ′ at
tree level, we obtain the effective Lagrangian

Leff
Z′ = − 1

2M2
Z′

(
λQ

ij d i
Lγµdj

L + λL
αβ ℓ

α
Lγµℓ

β
L

)2

⊃ − 1
2M2

Z′

[
(λQ

23)2
(
sLγµbL

)2
+ 2λQ

23λ
L
22(sLγµbL)(µ̄Lγ

µµL) + h.c.
]
.

Matching with Equations 7.3.4 and 7.3.7 we get

∆Cµ
9 = −∆Cµ

10 = − π√
2GFM

2
Z′α

(
λQ

23λ
L
22

VtbV
∗

ts

)
, (7.3.11)

and

CLL
bs =

η̂LL(MZ′)
4
√

2GFM
2
Z′

(
λQ

23
VtbV

∗
ts

)2

, (7.3.12)

where η̂LL(MZ′) encodes the RG running down to the bottom mass scale using NLO
anomalous dimensions [337, 422] – e.g. for MZ′ ∈ [1–10] TeV we find η̂LL(MZ′) ∈
[0.79, 0.75].

Here we consider the case of a real coupling λQ
23, so that CLL

bs > 0 and ∆Cµ
9 = −∆Cµ

10

is also real. This assumption is consistent with the fact that nearly all of the groups
performing global fits [89–100] (see however [423] for an exception) have so far
assumed real Wilson coefficients in Equation 7.3.7, and also follows the standard
approach adopted in the literature for the Z ′ models aiming at an explanation of
the b → sµ+µ− anomalies (for an incomplete list, see [101–130]). In fact, complex
Z ′ couplings can arise via fermion mixing, but are subject to additional constraints
from CP-violating observables (see Section 7.3.2).

The impact of the improved SM calculation of Bs mixing on the parameter space of
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Figure 7.1: Bounds from Bs mixing on the parameter space of the
simplified Z ′ model of Equation 7.3.10, for real λQ

23 and
λL

22 = 1. The blue and red shaded areas correspond
respectively to the 2σ exclusions from ∆MSM,2015

s and
∆MSM,2017

s , while the dashed (solid) black curves encom-
pass the 1σ (2σ) best-fit region from R

K
(∗) .

the Z ′ explanation of R
K

(∗) is displayed in Figure 7.1 for the reference value λL
22 = 1.1

Note that the old SM determination, ∆MSM,2015
s , allowed for values of M ′

Z up to
≈ 10 TeV in order to explain R

K
(∗) at 1σ. In contrast, our updated ∆MSM,2017

s

now implies M ′
Z ≲ 2 TeV. Remarkably, even for λL

22 =
√

4π, which saturates the
perturbative unitarity bound [426, 427], we find that the updated limit from Bs

mixing requires M ′
Z ≲ 8 TeV for the 1σ explanation of R

K
(∗) . However, whether a Z ′

of mass a few TeV is ruled out or not by direct searches at LHC depends on the details
of the Z ′ model. For instance, the stringent constraints from di-lepton searches [428]
are relaxed in models where the Z ′ couples mainly third generation fermions (as e.g.
in [129]). This notwithstanding, the updated limit from Bs mixing cuts dramatically
into the parameter space allowed for a Z ′ explanation of the b → sµ+µ− anomalies,
with important implications for the sensitivity of LHC direct searches and future
colliders [429] in discovering or ruling out models of this kind.

Leptoquarks

Another popular class of simplified models which has been proposed in order to
address the b → sµ+µ− anomalies consists of leptoquark mediators (see e.g. [307–

1For MZ′ ≲ 1 TeV the coupling λL
22 is bounded by the Z → 4µ measurement at LHC and by

neutrino trident production [424]. See for instance Figure 1 in [425] for a recent analysis.
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311, 313, 314, 316, 319, 320, 430–437]). Although Bs mixing is generated at one loop
[438, 439],1 and hence the constraints are expected to be milder compared to the
Z ′ case, the connection with the anomalies is more direct due to the structure
of the leptoquark couplings. For instance, let us consider the scalar leptoquark
S3 ∼ (3̄,3)1/3,2 with the Lagrangian

LS3 = −M2
S3 |S

a
3 |2 + yQL

iα Qci(ϵσa)Lα Sa
3 + h.c. , (7.3.13)

where σa (for a = 1, 2, 3) are the Pauli matrices, ϵ = iσ2, and Qi = (V ∗
jiuj

L d i
L)T and

Lα = (να
Lℓ

α
L)T are the quark and lepton doublet representations respectively (V being

the CKM matrix). The contribution to the Wilson coefficients in Equation 7.3.7 is
present at tree level and reads

∆Cµ
9 = −∆Cµ

10 = π√
2GFM

2
S3α

(
yQL

32 y
QL∗
22

VtbV
∗

ts

)
, (7.3.14)

while that to Bs mixing in Equation 7.3.4 is induced at one loop [441]

CLL
bs =

η̂LL(MS3)
4
√

2GFM
2
S3

5
64π2

(
yQL

3α y
QL∗
2α

VtbV
∗

ts

)2

, (7.3.15)

where the sum over the leptonic index α = 1, 2, 3 is understood. In order to compare
the two observables we consider in Figure 7.2 the case in which only the couplings
yQL

32 y
QL∗
22 (namely those directly connected to R

K
(∗)) contribute to Bs mixing, and

further assume real couplings so that we can use the results of global fits which apply
to real ∆Cµ

9 = −∆Cµ
10.

The bound on MS3 from Bs mixing is strengthened by a factor of 5 due to our new
determination of ∆Ms, which requires MS3 ≲ 22 TeV to explain R

K
(∗) at 1σ (see

Figure 7.2).

On the other hand, in flavour models predicting a hierarchical structure for the
leptoquark couplings one expects yQL

i3 ≫ yQL
i2 , so that the dominant contribution

to ∆Ms is given by yQL
33 y

QL∗
23 . For example, yQL

i3 /yQL
i2 ∼

√
mτ/mµ ≈ 4 in the partial

compositeness framework of [308], so that the upper bound on MS3 is strengthened
by a factor yQL

33 y
QL∗
23 /yQL

32 y
QL∗
22 ∼ 16. The latter can then easily approach the limits

from LHC direct searches which imply MS3 ≳ 900 GeV, e.g. for a QCD pair-produced
S3 dominantly coupled to third generation fermions [442].

1The scalar leptoquark model proposed in [433] is a notable exception.
2Similar considerations apply to the vector leptoquarks Uµ

1 ∼ (3, 1)2/3 and Uµ
3 ∼ (3, 3)2/3,

which also provide a good fit for R
K

(∗) . The case of massive vectors is however subtler, since the
calculability of loop observables depends upon the UV completion (for a recent discussion, see
e.g. [440]).
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Figure 7.2: Bounds from Bs mixing on the parameter space of the
scalar leptoquark model of Equation 7.3.13, for real
yQL

32 y
QL∗
22 couplings. Meaning of shaded areas and curves

as in Figure 7.1.

Combined R
K

(∗) and R
D

(∗) explanations

Another set of intriguing anomalies in B physics data are those related to the LFU
violating ratios R

D
(∗) ≡ B(B → D(∗)τν)/B(B → D(∗)ℓν) (here, ℓ = e, µ), which are

observed to be larger than the SM [443–445]. Notably, in this case NP competes with
a tree-level SM charged current, thus requiring a sizeably larger effect compared
to that needed to explain the neutral current anomalies. The conditions under
which a combined explanation of R

K
(∗) and R

D
(∗) can be obtained, while being

compatible with a plethora of other indirect constraints (such as e.g. those pointed
out in [446,447]), have been recently reassessed at the EFT level in [448]. Regarding
Bs mixing, dimensional analysis (see e.g. Equation (6) in [448]) shows that models
without some additional dynamical suppression (compared to semileptonic operators)
are already severely constrained by the old ∆Ms value. For instance, solutions based
on a vector triplet V ′ ∼ (1,3)0 [449], where Bs mixing arises at tree level, are
in serious tension with data unless one invokes e.g. a percent level cancellation
from extra contributions [448]. The updated value of ∆Ms in Equation 7.2.3 only
increases the tuning required. On the other hand, leptoquark solutions (e.g. the
vector Uµ

1 ∼ (3,1)2/3) comply better with the bound due to the fact that Bs mixing
arises at one loop, but the contribution to ∆Ms should be addressed in specific UV
models whenever calculable [320].
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7.3.2 Model building directions for ∆MNP
s < 0

Given the fact that ∆MSM
s > ∆M exp

s at about 2σ, it is interesting to consider
possible ways to obtain a negative NP contribution to ∆Ms, thus relaxing the
tension between the SM and the experimental measurement.

Sticking to the simplified models of Section 7.3.1 (Z ′ and leptoquarks coupled only
to LH currents), an obvious solution to achieve CLL

bs < 0 is to allow for complex
couplings (see Equation 7.3.11 and Equation 7.3.15). For instance, in Z ′ models this
could happen as a consequence of fermion mixing if the Z ′ does not couple universally
in the gauge-current basis. A similar mechanism could occur for vector leptoquarks
arising from a spontaneously broken gauge theory, while scalar-leptoquark couplings
to SM fermions are in general complex even before transforming to the mass basis.

Extra phases in the couplings are constrained by CP-violating observables, that we
discuss now. In order to quantify the allowed parameter space for a generic, complex
coefficient CLL

bs in Equation 7.3.4, we parameterise NP effects in Bs mixing via

MSM + NP
12

MSM
12

≡ |∆| eiϕ∆ , (7.3.16)

where
|∆| =

∣∣∣∣∣1 + CLL
bs

Rloop
SM

∣∣∣∣∣ , ϕ∆ = arg
(

1 + CLL
bs

Rloop
SM

)
. (7.3.17)

The former is constrained by ∆M exp
s /∆MSM

s = |∆|, while the latter by the mixing-
induced CP asymmetry [165,207]1

Amix
CP (Bs → J/ψϕ) = sin (ϕ∆ − 2βs) , (7.3.18)

where Amix
CP = −0.021± 0.031 [142], βs = 0.01852± 0.00032 [29], and we neglected

penguin contributions [165]. The combined 2σ constraints on the Wilson coefficient
CLL

bs are displayed in Figure 7.3.

For arg(CLL
bs ) = 0 we recover the 2σ bound

∣∣∣CLL
bs

∣∣∣ /Rloop
SM ≲ 0.014, which corresponds

to the case discussed in Section 7.3.1 where we assumed a nearly real CLL
bs (up to

a small imaginary part due to Vts). On the other hand, a non-zero phase of CLL
bs

allows relaxation of the bound from ∆Ms, or even accommodation of ∆Ms at 1σ
(region between the red dashed lines in Figure 7.3), and compatibility with the 2σ
allowed region from Amix

CP (blue shaded region in Figure 7.3). For arg(CLL
bs ) ≈ π

values of
∣∣∣CLL

bs

∣∣∣ /Rloop
SM as high as 0.21 are allowed at 2σ, relaxing the bound on the

modulus of the Wilson coefficient by a factor 15 with respect to the arg(CLL
bs ) = 0

1The semileptonic CP asymmetries for flavour-specific decays, as
sl, cannot generate competitive

constraints as the experimental errors are currently still too large [165].
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Figure 7.3: Combined constraints on the complex Wilson coefficient
CLL

bs . The blue shaded area is the 2σ allowed region
from Amix

CP , while the solid (dashed) red curves enclose
the 2σ (1σ) allowed regions from ∆MSM,2017

s .

case. Note, however, that the limit arg(CLL
bs ) = π corresponds to a nearly imaginary

∆Cµ
9 = −∆Cµ

10 which likely spoil the fit of R
K

(∗) , as the interference with the SM
contribution would be strongly suppressed. Nevertheless, it would be interesting
to perform a global fit of R

K
(∗) together with ∆Ms and Amix

CP while allowing for
non-zero values of the phase in order to see whether a better agreement with the
data can be obtained. Non-zero weak phases can potentially reveal themselves via
their contribution to triple product CP asymmetries in B → K (∗)µ+µ− angular
distributions [423].

An alternative way to achieve a negative contribution for ∆MNP
s is to go beyond the

simplified models of Section 7.3.1 and consider generalised chirality structures. Let
us choose, for definiteness, the case of a Z ′ coupled both to LH and RH down quark
currents

LZ′ ⊃
1
2M

2
Z′(Z ′

µ)2 +
(
λQ

ij d i
Lγ

µdj
L + λd

ij d i
Rγ

µdj
R

)
Z ′

µ . (7.3.19)

Upon integrating out the Z ′ one obtains

Leff
Z′ ⊃ −

1
2M2

Z′

[
(λQ

23)2
(
sLγµbL

)2
+ (λd

23)2
(
sRγµbR

)2

+ 2λQ
23λ

d
23(sLγµbL)(sRγµbR) + h.c.

]
.

(7.3.20)

The left-right (LR) vector operator can clearly have either sign, even for real cou-
plings. Moreover, since it gets enhanced by renormalisation-group effects compared
to LL and RR vector operators [450], it can dominate the contribution to ∆MNP

s .
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Note, however, that λd
23 contributes to R

K
(∗) via RH quark currents whose presence

is disfavoured by global fits, since they break the approximate relation RK ≈ RK∗

that is observed experimentally (see e.g. [99]). Hence a careful study would also be
required in this case in order to assess the simultaneous explanation of RK (∗) and
∆Ms.

7.4 Summary

In this chapter we made an updated SM prediction for the Bs mixing observable ∆Ms

(Equation 7.2.3) using the most recent values for the input parameters, in particular
new results from the lattice averaging group FLAG. Our update shifts the central
value of the SM theory prediction upwards and away from experiment by 13 %,
while reducing the theory uncertainty compared to the previous SM determination
by a factor of two – which when combined result in a 1.8σ discrepancy between
experiment and theory.

We further discussed an important application of the ∆Ms update for NP models
aimed at explaining the recent anomalies in semileptonic Bs decays. The latter
typically predict a positive shift in the NP contribution to ∆Ms, thus making the
discrepancy with respect to the experimental value even worse. We have shown
generically that whenever the NP contribution to ∆Ms is positive, the upper limit
on the mass of the NP mediators that must be invoked to explain any of the anomalies
is reduced by a factor of five (for a given size of couplings) compared to using the
2015 SM calculation for ∆Ms.

In particular, we considered two representative examples of NP models featuring
purely LH current and real couplings – that of a Z ′ with the minimal couplings
needed to explain R

K
(∗) anomalies, and a scalar (SU(2)L triplet) leptoquark model.

For the Z ′ case we get an upper bound on the Z ′ mass of 2 TeV (for unit Z ′ coupling
to muons, see Figure 7.1), an energy scale that is already being probed by direct
searches at LHC. On the other hand, the bounds on leptoquark models from Bs

mixing are generally milder, as the contributions to mixing are loop suppressed. For
instance, taking only the contribution of the couplings needed to fit RK (∗) for the
evaluation of ∆Ms we find that the upper bound on the scalar leptoquark mass
is brought down to about 20 TeV (see Figure 7.2). This limit gets strengthened,
however, in flavour models predicting a hierarchical structure of the leptoquark
couplings to SM fermions and can then easily approach the region probed by the
LHC. Solving the deviations in R

D
(∗) in addition to RK (∗) implies very severe bounds

from Bs mixing as well, since the overall scale of NP must be lowered compared to
the case of only neutral current anomalies.
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Given the current status of a higher theory value for ∆Ms compared to experiment,
we also have looked at possible ways in which NP can provide a negative contribution
that lessens the tension. A non-zero phase in the NP couplings is one such way,
and we have shown how extra constraints from the CP-violating observable Amix

CP

in Bs → J/ψϕ decays cuts out parameter space where otherwise a significant NP
contribution could be present. However, a large phase can potentially worsen the
fit for RK (∗) , increasing the need for a combined global fit of ∆Ms, Amix

CP and RK (∗) .
Another possibility is to consider NP models with a generalised chirality structure. In
particular, ∆B = 2 LR vector operators, which are renormalisation-group enhanced,
can accommodate any sign for ∆MNP

s , even for real couplings. Large contributions
from RH currents are however disfavoured by the R

K
(∗) fit, and again a more careful

analysis is needed.
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Conclusions

The aim of this thesis has been to focus on certain observables within particle physics,
and to understand how they may lead us either to greater heights in confirming the
Standard Model, or show us the way to as yet unknown physics. We have chosen
on flavour physics as our target as it holds the key to many rare processes that are
ideal for our purpose. The structure of the SM means that a great many flavour
observables are suppressed by various means, and so any new physics that can lift
the suppression should either stand out easily or have very strong bounds placed
upon it.

Within this thesis we have approached our task from several angles, in an attempt to
elucidate all we can. We have looked at the basic underlying assumptions of the way
we calculate, so that we might be sure if we can distinguish a failure of the tool from
genuine new effects; we have improved the accuracy of calculations by improving the
determinations of crucial inputs; and studied directly a few models of BSM physics
and the limitations imposed by the current and future precision of experimental and
theoretical results.

Following on from Chapter 1 where we introduced the Standard Model, flavour
physics, and the problems facing theory today, in Chapter 2 we outlined many of the
standard tools of flavour physics used to perform calculations and make predictions.
As part of that, we focussed in depth on two simple calculations – the matching of
the SM to the weak effective theory and the leading order calculation of the mass
difference ∆Ms arising from Bs mixing, both to illuminate the tools we had described
at the start of the chapter, and as a helpful guide to those who follow by including
details that are so often “left as an exercise to the reader”.

In Chapter 3, we studied one of the underlying assumptions of the HQE, quark-
hadron duality. The HQE is an important technique for calculating in our effective
theory, where the b quark mass is far removed from most other relevant scales,
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but it cannot account for any violation of the duality between inclusive quark level
calculations and exclusive studies of fully identified hadronic decay modes. As the
rest of the thesis relies on the HQE for precision calculations and for identifying
possible NP effects in flavour observables, it is of vital importance that we can trust
our tools – we must be sure that our phenomenological predictions correctly reflect
the underlying theory.

We tested quark-hadron duality by constructing a simple phenomenological model of
how duality violations could occur, which we presented in Equations 3.2.10 to 3.2.12.
Using this simple model we studied how the theory prediction for mixing observables
∆Γ and asl would be affected. Due to cancellations, the ratio ∆Γs/∆Ms is one of the
highest precision mixing observables, and so we used that to bound our simple model.
Comparing theory and experiment, we showed that within our model, duality could
be violated by no more than 20–25 % in the cc decay channel (see Equation 3.2.14).
We next examined a generalised version of our model and saw (for example in
Figure 3.2) how large duality violating effects in ∆Γs could be hidden in as

sl. The
general model allowed us to make more profound statements about possible future
measurements of the currently unmeasured quantities as

sl, ad
sl, and ∆Γd. Taking

duality to be violated by the maximum allowed by current results, we showed in
Figure 3.3 what size of measurement by a future experiment could only be explained
by new physics rather than a breakdown of the HQE. In the spirit of looking forward,
we took recent lattice results of greatly improved precision and briefly examined
how they would affect our conclusions, and how far the limits might conceivably be
pushed. Our brief adventure saw the possibility of constraining duality violation at
close to the 5 % level.

Since the structure of the HQE and processes that contribute to the lifetime ratio
τ(Bs)/τ(Bd) are similar to those in ∆Γ, we took a slight detour to see whether
that observable could be affected by duality violations. The results are shown in
Figure 3.5 – currently we cannot make any further statement beyond what we have
already learned, but future scenarios could be very enlightening depending on the
direction experiment takes.

While in the B sector the agreement between theory and experiment for mixing
allows us to bound duality violations, in the D sector we saw that opposite is
true. Currently it is not clear how well the HQE works for the simple reason that
1/mb ≪ 1/mc, and the inclusive calculation of ∆M and ∆Γ for D mixing seems
to totally disagree with experiment, at least with the current level of calculated
corrections. However a small duality violation, of roughly the same size as currently
allowed in Bs mesons can bring the HQE calculation into agreement by breaking the
extremely effective GIM cancellation that arises in the standard calculation.
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What we learned from this chapter is that while current precision does place limits on
violations of quark-hadron duality, there are a few areas where swift progress could
be made. The major uncertainty in most of our calculations comes from the matrix
elements of dimension-six and dimension-seven operators, and future improvement
there would be very meaningful – our work in Chapter 6 is an example of what can
be done here.

In Chapter 4 we study the problem of dark matter that was first discussed in
Section 1.3.1. As we explained there, the existence of dark matter has been known
for many decades now, but our knowledge of the nature of dark matter is effectively
still limited to its abundance in the universe and the interactions with our current
detectors. With so much unknown about the dark sector, it is tempting to make
use of effective field theories as these can be sufficiently general as to assume almost
nothing about the undiscovered particles. Yet there is an issue with these – while
valid at low scales, they break down once experiments start to probe close to the scale
associated with the new physics. This is a problem as the search for dark matter
is currently proceeding from three directions: direct detection, indirect detection
and collider searches. Since there are some theoretical reasons to believe that at
least part of the dark sector should be close to the energy scale of the LHC, an EFT
approach cannot be used to include all current searches for dark matter.

Once this became clear to the community, so-called simplified models gained pop-
ularity as a tool for dark matter investigations. In these models, a minimal set of
dark sector particles are kept as dynamical degrees of freedom, allowing the correct
behaviour at LHC energy scales to be reproduced. As we have seen in this thesis,
the flavour sector of the SM has a non-trivial structure, and so the question arises of
how to proceed with any interaction with dark matter. In our work, we chose to go
beyond the MFV hypothesis to study a dark sector with a coloured mediator and
three dark sector particles (of which the lightest will be DM) with complex (in the
sense of not simple) couplings to the quark sector. Since we know that the current
theory predictions for mixing in the up type sector are not in agreement with the
experimental results, we looked at dark matter with couplings to right handed up
type quarks to see how it might contribute.

We approached it using an MCMC to deal with our large parameter space and the
many constraints. MCMC techniques not only allowed us to probe the relatively high
dimensional parameter space efficiently, but also to get a statistical handle on the
allowed regions that we found. Looking at Figure 4.14, we see that the MCMC tells
us that for dark matter coupling predominantly to top quarks, both the mediator
and dark matter are, at 2σ, forbidden from having masses below O (1 TeV). On the
contrary, for predominant charm quark coupling we can go lighter in mass for both
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particles and, by allowing a small mass splitting between the flavour triplet dark
particles, push this bound down to almost 100 GeV. We note that collider constraints
can rule out most of this low mass range if we allow roughly equal coupling to all
quarks, as the LHC searches for stop dijet production are constraining at this
mass range. There are few searches (aimed at e.g. scharm production) which would
constrain the charming dark matter scenario, so we maintain our result that allowing
coupling to multiple up type quarks can allow what might otherwise be considered
excluded parameter space.

In the SM there are many rare B processes that are highly suppressed, which makes
them ideal probes of BSM physics. We introduced in Section 1.3.4 how rare B decays
have thrown up intriguing signs of new physics. The first signs of these NP effects
were in B → Kℓℓ decays and were interpreted as lepton flavour universal effects in
the Wilson coefficient C9. In the SM, around half of the effect in this operator is
generated by a 1-loop diagram involving b → ccs transitions. As such, it seemed
plausible that a relatively small NP contribution here could account for the observed
deviations.

We studied this possibility in Chapter 5, since these four quark operators show
up in the Bs mixing and lifetime calculations, as well as the radiative decay mode
B → Xsγ. All these observables are well measured experimentally, and are under
decent theoretical control – a correlated effect between all these could provide a
distinct signature. We looked at operators of the form (sb)(cc) with the full set
of possible Dirac structures, and used the aforementioned observables to constrain
the NP Wilson coefficients. As part of our calculation, we computed the leading
order mixing of our chosen effective operators into the full set of ∆B = −∆S = 1
operators.

We use our computation to show how, if these effective operators are generated
at the weak scale or beyond, strong renormalisation-group effects can enhance the
impact on the semileptonic decays b → sℓℓ while leaving radiative B decay largely
unaffected. Meanwhile, if they are generated by low scale NP the resulting effect in
C9 has a non-trivial dependence on q2 (the invariant mass of the lepton pair), which
is contrary to the prevailing wisdom in much of the literature. As a result of our
study, we showed that there are certain contributions within this scenario where the
overall fit between theory and experiment can be improved in the SM for our chosen
observables. This can be seen from Figure 5.3, where we have marked with a gold
star points in parameter space where the C9 shift can be accommodated alongside
improvements in at least some of our observables. An obvious caveat to our results
in this chapter is the non universality shown in R

K
(∗) , as our loop level contribution

to the rare decay anomalies must be lepton flavour universal without some extra
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model-dependent NP.

As a final study in that chapter, we examined how future prospects for the mixing
and lifetime observables would alter our conclusions, and allow us to discriminate
between different BSM effects.

As we saw in Chapter 3, precision flavour calculations are heavily reliant on lattice
calculations of the matrix elements of effective operators, and advances in this area
can bring a wealth of benefits. In Chapter 6, we used sum rule techniques to
calculate the bag parameters for the dimensions-six operators contributing to mixing
and lifetime calculations, in both the bottom and charm sector. These types of
calculation are typically not as precise as lattice, but for the bag parameters we have
a unique situation where competitive results are possible. Since these inputs are of
vital importance to theory, for both precision calculations and for constraining new
physics (as we saw in Chapter 7), an independent determination is vital. Sum rules
have completely different systematics to lattice calculations, and so they can provide
this independent checks of lattice results.

The technical aspect of our work came in three parts – we formulated our sum rules at
low scales using HQET, then calculated the anomalous dimensions of the operators
so as to RG run them up to the b mass scale, and then matched from HQET to QCD
at 1-loop. Our main results are given in Equations 6.4.2, 6.5.13, 6.6.1 and 6.6.2. The
∆B = 2 results show (see Figure 6.4) a competitive precision compared to current
lattice calculations – this is achievable because we have formulated the sum rule
for the quantity ∆B = B − 1, i.e. the deviation from the VSA, and so the overall
error is reduced for the full bag parameter result. For ∆C = 2 (Figure 6.7), our
uncertainties are still slightly behind lattice, as the lower charm scale increases the
size of the perturbative corrections.

For the lifetime operators (∆F = 0), our work is of even more significance. The
operators needed for B lifetime calculations have not been updated since 2001 and
so our result (seen in Figure 6.6) stands as the only state-of-the-art determination
available today. In the calculation of D meson lifetimes, up until now there has only
been the VSA to rely upon as no lattice study has ever been done. Our new result
allows the first real test of the HQE for D lifetimes, which is shown in the top section
of Figure 6.9. The central result for the lifetime ratio τ(D+)/τ(D0 ) agrees very well
with experiment, which is a major improvement, but there is still significant room
for improvement in both.

With our new results many of the dominant uncertainties are now due to dimension-
seven operators, which are currently undetermined. Our sum rules method can be
extended to these subleading contributions, and could allow a substantial reduction
in theoretical uncertainties.
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In recent years, it has become clear that something is going on in a variety of
rare b → sℓℓ decays, and that NP might well be the explanation. The most likely
effective theory scenario is one in which new physics couples to the SM in form of
the operator (sγµPLb)(µ̄γµµ). Since the quark part of this operator matches the
“square root” of the SM operator that generates Bs mixing, many of the proposed
explanations have profound implications for the theoretical prediction for mixing,
and so in Chapter 7 we looked at how these models are affected by changes in the
SM prediction. Following on from our initial look in Chapter 3, we take the most
recent set of lattice averages and consider them seriously in terms of their effect on
∆Ms.

Our first result was the updated calculation for ∆Ms, which is given in Equation 7.2.3.
It shows a 1.8σ deviation from the experimental result, as a result of both an enlarged
central value and a greater than 50 % reduction in the uncertainty. The lattice result
we first discussed in Chapter 3 plays a large role in this, but there is also a major
improvement in the precision of Vcb from the CKM fitting community. Our next
result is that this updated SM prediction strengthens the mass constraints by a
factor of five for any NP model that provides a positive contribution to ∆Ms, and we
demonstrate this explicitly for Z ′ models in Figure 7.1 and leptoquarks in Figure 7.2.
This means that a minimal Z ′ that doesn’t increase the tension in the mixing sector
to unreasonable levels cannot also explain the flavour anomalies unless it is lighter
than around 2–3 TeV.

In light of these tight bounds, we thought about how a NP model could reduce the
tension in mixing alongside the tension in b decays. We presented a solution where the
Z ′ off-diagonal couplings are complex, allowing for a negative contribution to ∆Ms,
and showed a CP-violating observable that would come into play. An alternative
direction was also pursued, where allowing multiple chiralities in the quark coupling
might allow for reduced tension in the mass difference, and we discussed that RG
effects could play an important role here. Our final thought was that assuming
all the anomalies, in both decays and mixing, hold up under further inspection, a
careful study of these possibilities would be something worth pursuing. Particularly
for the mixing result, a confirmation of our calculation (by further lattice groups
confirming the large FNAL/MILC results for the four quark matrix elements, as
well as a definite solution of the Vcb puzzle) would give further confidence in the
extraordinary strength of the bounds we found.

Over the course of this thesis, we have aimed to study how flavour physics observables
can be used to test the Standard Model as well as being used as a search space for
beyond the Standard Model effects. Following our initial look at some underlying
assumptions, we identified areas where progress could be made, and worked towards
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these in the rest of the thesis, following interesting hints when they appeared. We
hope that the steps laid out here have provided a useful improvement in the areas of
B mixing and lifetimes, as well as searches for new physics. We are optimistic that
the study of flavour physics and the lines of enquiry within this thesis will continue
to be fruitful in the years ahead.





Appendix A

Fierz transformations

Fierz identities are often considered in the context of particular relationships between
pairs of fermion bilinears – probably the most well known is

(γµPL)ij(γµPL)kl = −(γµPL)il(γνPL)kj

which is often useful in flavour physics calculations and also in e.g. the calculation
of the MSW [451,452] effect for neutrino propagation in matter.

However they can instead be considered (perhaps more correctly) as a set of identities
that can be found for any complete set of square matrices, which arise simply as a
consequence of completeness relations over this basis set.

In general, if we have some matrix vector space which is spanned by the basis set
{M i}, then we can write identities of the form

M i ⊗M j = Mk ⊗M l .

In this way, the colour rearrangement identity

taijt
a
kl = 1

2

(
δilδkj −

1
Nc

δijδkl

)
(A.0.1)

can be viewed as a Fierz identity, since the space of 3 × 3 matrices is spanned by
the set {ta} of generators of SU(3) plus the identity matrix.

A useful introduction to generalised Fierz identities and how to calculate them
is [453]. We will use the notation of that paper (itself taken from Takahashi [454])
in the rest of this appendix, where we list some identities that are used in this
thesis. It is important to note that when these identities are used in conjunction
with fermionic operators rather than spinors, an extra minus sign will arise from the
anti-commuting nature of the operators.
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(γµPL)[γµPL] = −(γµPL][γµPL) (A.0.2)

(γµγνγλPL)[γλγνγµPL] = −4(γµPL][γµPL) (A.0.3)

(PL)[PL] = 1
2(PL][PL) + 1

8(σµνPL][σµνPL) (A.0.4)

(PL)[PR] = 1
2(γµPR][γµPL) (A.0.5)

(σµνPL)[σµνPL] = 6(PL][PL)− 1
2(σµνPL][σµνPL) (A.0.6)

(σµνPL)[σµνPR] = 0 (A.0.7)

(σαβσµνPL)[σµνσαβPL] = 72(PL][PL) + 2(σµνPL][σµνPL) (A.0.8)



Appendix B

Feynman Rules

Our SM Feynman rules can be found by taking those in [455] and setting η = ηs =
η′ = ηe = −1 and ηZ = ηθ = ηY = 1. (Note that in that work all particles are
considered incoming in Feynman diagrams.) These match the conventions of [456].

In Table B.1 below, we show the Feynman rules for heavy quarks in HQET.
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i j

µ, a

∼ igsv
µtaji

j i

µ, a

∼ −igsv
µtaji

p = mv + p̃

∼ i(1+/v)
2v·p̃

p = mv + p̃

∼ i(1−/v)
2v·p̃

Table B.1: HQET Feynman rules.



Appendix C

Four Quark Matrix Elements

In phenomenological calculations matrix elements of four quark operators often
arise, and so knowing these matrix elements is of vital importance to being able to
make theoretical predictions. However these are non-perturbative objects and so
calculating them is non-trivial. Nowadays, lattice QCD has progressed to the point
of being able to provide precision determinations, but historically other techniques
were used. In particular the Vacuum Saturation Approximation (VSA) is a simple
way of analytically approximating the result, and current data shows it even holds
numerically at the 10–20 % level [161,162]. The VSA approximates the four quark
matrix elements as a product of decay to vacuum operators, and so gives us an
estimate in terms of meson decay constants plus various colour factors. Below we
show an example of a VSA calculation, and then we list the results for different
operators.

Note that we show results in this appendix for Bs-Bs mixing and Bs lifetime calcula-
tions – the generalisation to Bd , D, etc. mesons can be found by making the obvious
substitutions.

VSA Calculation Example

If we take the operator O1 = (bi
γµPLsi)(bj

γµPLsj), there are four ways to contract
this with an incoming Bs and outgoing Bs state – two for the b quarks and two for
the s quarks. Making use of the Fierz identities stated in Equations A.0.1 and A.0.2,
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we can write the matrix element ⟨Bs|O1|Bs⟩ ≡ ⟨O1⟩ as

⟨O1⟩ = ⟨Bs|(b
i
γµPLsi)(bj

γµPLsj)|Bs⟩

= 2
[ (
⟨Bs| b

i
γµPLsi

) (
bj
γµPLsj |Bs⟩

)
+
(
⟨Bs| b

i
γµPLsj

) (
bj
γµPLsi |Bs⟩

) ]
= 2

[ (
1 + 1

Nc

)(
⟨Bs| b

i
γµPLsi

) (
bj
γµPLsj |Bs⟩

)
+2

(
⟨Bs| b

i
γµPLt

a
ijsj

) (
bk
γµPLt

a
klsl |Bs⟩

) ]
,

where the round brackets fix the operator contraction. (The factor of two is the same
as seen in Equation 2.4.18.) We then take the completeness relation I = ∑

X |X⟩ ⟨X|
and insert it into the middle of the four quark operator:

⟨O1⟩ = 2
∑
X

[ (
1 + 1

Nc

)
⟨Bs|b

i
γµPLsi|X⟩ ⟨X|bj

γµPLsj|Bs⟩

+2 ⟨Bs|b
i
γµPLt

a
ijsj|X⟩ ⟨X|bk

γµPLt
a
klsl|Bs⟩

]
.

The VSA amounts to assuming the vacuum state dominates this sum, and so we can
write

⟨O1⟩
VSA= 2

[ (
1 + 1

Nc

)
⟨Bs|b

i
γµPLsi|0⟩ ⟨0|bj

γµPLsj|Bs⟩

+2 ⟨Bs|b
i
γµPLt

a
ijsj|0⟩ ⟨0|bk

γµPLt
a
klsl|Bs⟩

]
.

The second term goes to zero as the colour octet operator cannot annihilate a colour
singlet meson, while for the first term we can use the definitions of the meson decay
constant

⟨0|bγµs|Bs(p)⟩ = 0
⟨0|bγµγ

5s|Bs(p)⟩ = ipµfBs

⇒ ⟨0|bγµPL,Rs|Bs(p)⟩ = ∓ i2pµfBs (C.0.1)

to give our result

⟨O1⟩
VSA= 2

(
1 + 1

Nc

)(
− i2p

µfBs

)† (
− i2pµfBs

)

= 1
2

(
1 + 1

Nc

)
M2

Bsf
2
Bs .

Since the VSA is only an approximation, we introduce an extra correction factor,
known as the bag parameter,1 to account for deviations from this behaviour and

1The term “bag” dates back to the MIT bag model of hadrons.
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write the matrix element as

⟨Bs|O1|Bs⟩ = 2
3f

2
BsM

2
BsB1 .

∆F = 2 operators

For ∆F = 2 operators, we can use Fierz relations to reduce the set of possible
dimension-six operators which can arise to a minimal basis set, which are shown
below:

O1 = (bα
γµPLsα)(bβ

γµPLsβ) ,

O2 = (bα
PLsα)(bβ

PLsβ) ,

O3 = (bα
PLsβ)(bβ

PLsα) ,

O4 = (bα
PLsα)(bβ

PRsβ) ,

O5 = (bα
PLsβ)(bβ

PRsα) ,

Õ1 = (bα
γµPRsα)(bβ

γµPRsβ) ,

Õ2 = (bα
PRsα)(bβ

PRsβ) ,

Õ3 = (bα
PRsβ)(bβ

PRsα) .

This minimal set was first derived in the context of supersymmetric extensions of the
SM [160], and so is often referred to as the “SUSY basis”. Since parity is a symmetry
of QCD, ⟨Õ⟩ = ⟨O⟩ holds as long as we don’t consider electroweak corrections to the
matrix elements. At dimension seven, there are several more operators that arise –
see [176] for details.

The matrix elements of the SUSY basis can be written in the form (notation taken
from [217])

⟨O1⟩ = c1f
2
BsM

2
BsB1 ,

⟨Oi⟩ = cif
2
BsM

2
Bs

(
MBs

mb +ms

)2

Bi (i = 2, 3) ,

⟨Oi⟩ = cif
2
BsM

2
Bs

( MBs

mb +ms

)2

+ di

Bi (i = 4, 5) ,

(C.0.2)

where ci = {2/3,−5/12, 1/12, 1/2, 1/6}, d4 = 1/6, and d5 = 3/2. These prefactors can be
derived in the same way as in the above example, making use of Equations A.0.4
and A.0.5, as well as the following two further relations involving the decay constant.
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We can show
⟨0|bPL,Rs|Bs(p)⟩ = ± i2

MBs

mb +ms

fBs

by contracting the meson momentum pµ with our result in Equation C.0.1 (see
Section 4.3 of [457]); we must also have

⟨0|bσµνs|Bs(p)⟩ = 0

since we cannot construct an antisymmetric Lorentz tensor out of a single 4-momentum.

∆F = 0 operators

For ∆F = 0 operators, the standard set considered (which are those which arise in
the SM) is

Q1 = (bγµPLq)(q̄γµPLb)
Q2 = (bPLq)(q̄PLb)
T1 = (bγµtaPLq)(q̄γµt

aPLb)
T2 = (btaPLq)(q̄taPLb)

which have matrix elements

⟨Qi⟩ = Aif
2
BsM

2
BsBi

⟨Ti⟩ = Aif
2
BsM

2
Bsϵi

(C.0.3)

where Bi = 1 and ϵi = 0 in the VSA and

A1 = 1
4 , A2 = 1

4

(
MBs

mb +ms

)2

. (C.0.4)



Appendix D

Additional information from
“Quark-Hadron Duality”

In this appendix we present more information on the work in Chapter 3.

In Table D.1, we show the error breakdown for our updated lifetime ratio calcula-
tion in Equation 3.2.32, which has an error smaller than the current experimental
measurement by a factor of four, and the previous SM calculation by a factor two.

In Table D.2, we present the inputs for our “aggressive” SM calculation in Section 3.3.

In Tables D.3 to D.10 we present the error breakdown for our updated predictions.

Finally in Appendix D.2 we show the proof of the inequality used in Section 3.4.



190 Appendix D. “Quark-Hadron Duality”

D.1 Inputs and detailed view of uncertainties

Parameter Error contribution
δ(ϵ1) 0.0710 %
δ(ϵ2) 0.0510 %
δ(fBs

) 0.0290 %
δ(µ2

G(Bs)/µ2
G(Bd)) 0.0280 %

µ2
π(Bs)− µ2

π(Bd)) 0.0230 %
δ(fBd

) 0.0230 %
δ(c3) 0.0230 %
δ(µ) 0.0160 %
δ(B1) 0.0140 %
δ(µ2

G(Bd)) 0.0130 %
δ(B2) 0.0100 %
δ(cG) 0.007 %
δ(mb) 0.004 %
δ(|Vcb|) 0.003 %
δ(mc) 0.001 %
δ(τBs

) <0.001 %
δ(MBs

) <0.001 %
δ(MBd

) <0.001 %
δ(|Vus|) <0.001 %
δ(γ) <0.001 %
δ(|Vub/Vcb|) <0.001 %∑
δ 0.108 %

Table D.1: Error breakdown for the SM prediction for τ(Bs)/τ(Bd)
given in Equation 3.2.32.
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Parameter This work ABL 2015 [165]

fBs

√
B (0.223± 0.007) GeV (0.215± 0.015) GeV

fBd

√
B (0.185± 0.008) GeV (0.175± 0.012) GeV

B3/B (Bs) 1.15± 0.16 1.07± 0.06
B3/B (Bd) 1.17± 0.24 1.04± 0.12
B̃R0/B (Bs) 0.54± 0.55 1.00± 0.3
B̃R0/B (Bd) 0.35± 0.80 1.00± 0.3
B̃R1/B (Bs) 1.61± 0.10 1.71± 0.26
B̃R1/B (Bd) 1.72± 0.15 1.71± 0.26
B̃R̃1

/B (Bs) 1.223± 0.093 1.27± 0.16
B̃R̃1

/B (Bd) 1.31± 0.14 1.27± 0.16
|Vcb| 0.04180+0.00033

−0.00068 0.04117+0.00090
−0.00114

|Vub/Vcb| 0.0889± 0.0019 0.0862± 0.0044
γ 1.170+0.015

−0.035 1.171+0.017
−0.038

|Vus| 0.22542+0.00042
−0.00031 0.22548+0.00068

−0.00034

Table D.2: Input parameters used in the “aggressive” determination
of Section 3.3, compared to the previous SM calculation.

Error contribution
Parameter This work ABL 2015 [165]

δ(fBs

√
B) 0.0635 % 0.139 %

δ(|Vcb|) 0.0240 % 0.049 %
δ(mt) 0.0066 % 0.007 %
δ(ΛQCD) 0.0013 % 0.001 %
δ(γ) 0.0009 % 0.001 %
δ(mb) 0.0005 % <0.001 %
δ(|Vub/Vcb|) 0.0004 % 0.001 %∑
δ 0.0682 % 0.148 %

Table D.3: Error breakdown for the mass difference ∆Ms.

Error contribution
Parameter This work ABL 2015 [165]

δ(fBd

√
B) 0.0872 % 0.137 %

δ(|Vcb|) 0.0240 % 0.049 %
δ(mt) 0.0066 % 0.001 %
δ(ΛQCD) 0.0013 % 0.0 %
δ(γ) 0.0208 % 0.002 %
δ(mb) 0.0005 % 0.0 %
δ(|Vub/Vcb|) 0.0001 % 0.0 %∑
δ 0.0931 % 0.148 %

Table D.4: Error breakdown for the mass difference ∆Md.
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Error contribution
Parameter This work ABL 2015 [165]
δ(µ) 0.0889 % 0.084 %
δ(fBs) 0.0635 % 0.139 %
δ(BR2) 0.0604 % 0.148 %
δ(B3) 0.0539 % 0.021 %
δ(BR0) 0.0301 % 0.021 %
δ(|Vcb|) 0.0240 % 0.049 %
δ(z̄) 0.0109 % 0.011 %
δ(mb) 0.0080 % 0.008 %
δ(BR̃1

) 0.0038 % 0.007 %
δ(ms) 0.0024 % 0.001 %
δ(BR3) 0.0023 % 0.002 %
δ(BR1) 0.0018 % 0.005 %
δ(γ) 0.0010 % 0.001 %
δ(ΛQCD) 0.0010 % 0.001 %
δ(|Vub/Vcb|) 0.0004 % 0.001 %
δ(mt) 0 % <0.001 %∑
δ 0.1421 % 0.228 %

Table D.5: Error breakdown for the width difference ∆Γs.

Error contribution
Parameter This work ABL 2015 [165]
δ(µ) 0.0929 % 0.079 %
δ(fBd ) 0.0872 % 0.137 %
δ(B3) 0.0809 % 0.04 %
δ(BR2) 0.0623 % 0.144 %
δ(BR0) 0.0533 % 0.025 %
δ(|Vcb|) 0.0240 % 0.049 %
δ(γ) 0.0233 % 0.002 %
δ(z̄) 0.0109 % 0.011 %
δ(mb) 0.0076 % 0.008 %
δ(BR3) 0.0023 % 0.005 %
δ(ΛQCD) 0.0009 % 0.001 %
δ(|Vub/Vcb|) 0.0008 % 0.001 %
δ(BR̃1

) 0.0 % 0.0 %
δ(md) — —
δ(BR1) 0.0 % 0.0 %∑
δ 0.175 % 0.227 %

Table D.6: Error breakdown for the width difference ∆Γd.
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Parameter Error contribution
δ(µ) 0.0889 %
δ(BR2) 0.0604 %
δ(B3) 0.0539 %
δ(BR0) 0.0301 %
δ(z̄) 0.0109 %
δ(mb) 0.0080 %
δ(mt) 0.0066 %
δ(B̃R1) 0.0038 %
δ(ms) 0.0024 %
δ(ΛQCD) 0.0023 %
δ(BR3) 0.0023 %
δ(BR1) 0.0018 %
δ(γ) 0.0001 %
δ(|Vub/Vcb|) 0 %
δ(|Vcb|) 0 %∑
δ 0.125 %

Table D.7: Error breakdown for the ratio ∆Γs/∆Ms.

Parameter Error contribution
δ(µ) 0.0929 %
δ(B3) 0.0809 %
δ(BR2) 0.0623 %
δ(BR0) 0.0533 %
δ(z̄) 0.0109 %
δ(mb) 0.0076 %
δ(mt) 0.0066 %
δ(γ) 0.0025 %
δ(BR3) 0.0023 %
δ(ΛQCD) 0.0022 %
δ(|Vub/Vcb|) 0.0009 %
δ(B̃R1) 0.0 %
δ(md) 0.0 %
δ(BR1) 0.0 %
δ(|Vcb|) 0.0 %∑
δ 0.149 %

Table D.8: Error breakdown for the ratio ∆Γd/∆Md.
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Parameter Error contribution
δ(µ) 0.0946 %
δ(z̄) 0.0463 %
δ(Vub/Vcb) 0.0211 %
δ(γ) 0.0118 %
δ(BR3) 0.0106 %
δ(mb) 0.0101 %
δ(mt) 0.0066 %
δ(BS) 0.0078 %
δ(ΛQCD) 0.0053 %
δ(BR2) 0.0039 %
δ(B̃R1) 0.0030 %
δ(BR0) 0.0026 %
δ(ms) 0.0021 %
δ(BR1) 0.0002 %
δ(Vcb) 0 %∑
δ 0.1098 %

Table D.9: Error breakdown for as
sl.

Parameter Error contribution
δ(µ) 0.0937 %
δ(z̄) 0.0487 %
δ(|Vub/Vcb|) 0.0215 %
δ(mb) 0.0129 %
δ(B3) 0.0123 %
δ(BR3) 0.0115 %
δ(γ) 0.0105 %
δ(mt) 0.0066 %
δ(ΛQCD) 0.0054 %
δ(BR0) 0.0049 %
δ(BR2) 0.0042 %
δ(B̃R1) 0.0 %
δ(md) 0.0 %
δ(BR1) 0.0 %
δ(|Vcb|) 0.0 %∑
δ 0.111 %

Table D.10: Error breakdown for ad
sl.
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D.2 Proof of ∆Γ ≤ 2|Γ12|

In the B system we get the very simple expression Equation 2.4.16 for the mixing
observables ∆M and ∆Γ in terms of M12 and Γ12, by expanding in the small
parameter ∆Γ/∆M . In the D system ∆Γ and ∆M are of the same order and so one
would have to exactly solve the two defining equations. One can find however, the
inequality ∆Γ ≤ 2|Γ12|, which gives us the opportunity to calculate only Γ12 and to
give an upper bound on ∆Γ.

We start with the two fundamental equations for the mixing observables:

(∆M)2 − 1
4(∆Γ)2 = 4|M12|2 − |Γ12|2 , (D.2.1)

∆M∆Γ = 4|M12||Γ12| cosϕ12 . (D.2.2)

Next we eliminate ∆M by substituting Equation D.2.2 into Equation D.2.1, and
then solve for |M12|.

16|M12|2|Γ12|2 cos2 ϕ12

(∆Γ)2 − 1
4(∆Γ)2 = 4|M12|2 − |Γ12|2

|M12|2
(

16|Γ12|2 cos2 ϕ12

(∆Γ)2 − 4
)

= 1
4(∆Γ)2 − |Γ12|2

|M12|2 =
1
4(∆Γ)2 − |Γ12|2(

16|Γ12|2 cos2
ϕ12

(∆Γ)2 − 4
) .

(D.2.3)

Since |M12|2 ≥ 0, we can say that the numerator and denominator on the right hand
side of the last line of Equation D.2.3 must have the same sign.

First, assume both terms are ≥ 0:

1
4(∆Γ)2 − |Γ12|2 ≥ 0 and 16|Γ12|2 cos2 ϕ12

(∆Γ)2 − 4 ≥ 0 (D.2.4)

=⇒ (∆Γ)2 ≥ 4|Γ12|2 and (∆Γ)2 ≤ 4Γ2
12 cos2 ϕ12 . (D.2.5)

These inequalities are only consistent in the case cos2 ϕ12 = 1 and ∆Γ = 2|Γ12|.

Now, assume both terms are ≤ 0:

1
4(∆Γ)2 − |Γ12|2 ≤ 0 and 16|Γ12|2 cos2 ϕ12

(∆Γ)2 − 4 ≤ 0 (D.2.6)

=⇒ (∆Γ)2 ≤ 4|Γ12|2 and 4Γ2
12 cos2 ϕ12 ≤ (∆Γ)2 . (D.2.7)

As 0 ≤ cos2 ϕ12 ≤ 1, these inequalities are consistent for either a) cos2 ϕ12 = 1 which
gives ∆Γ = 2|Γ12| or b) 2|Γ12|| cosϕ12| ≤ ∆Γ ≤ 2|Γ12|.
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We see that for either assumption the inequality ∆Γ ≤ 2|Γ12| holds. A similar line
of reasoning shows that the inequality ∆M ≤ 2|M12| also holds.



Appendix E

Additional information from
“Charming Dark Matter”

In this appendix we present more information on the work in Chapter 4.

In Appendix E.1 we explicitly give the Wilson coefficients that arise when considering
contributions to rare D decays, in Appendix E.2 we give more information on
our technique for calculating constraints from direct detection experiments, and in
Appendix E.3 we show some of the Feynman diagrams that contribute to collider
signatures for dark matter.

E.1 Rare decays

The non-zero Wilson coefficients arise from electroweak penguins (shown in Fig-
ure E.1) and (neglecting Z penguins since the small momentum transfer means they

γ, Z

l l

c

χi

u

φ

γ, Z

l l

u

c

u

χi

φ

γ, Z

l l

c

c

uχi

φ

Figure E.1: The DMFV model contribution to the effective opera-
tors governing rare decays of charm mesons, including
explicit self-energy corrections to the external quark
legs as explained in the text. The γ,Z couple to a lep-
ton pair.
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amount to an O (1 %) correction) we find

C ′
7 =

∑
i

λ1iλ
∗
2i

6
√

2GF

[
C1(m2

c , q
2, 0,m2

χi
,m2

ϕ,m
2
ϕ) + C11(m2

c , q
2, 0,m2

χi
,m2

ϕ,m
2
ϕ)

+C12(m2
c , q

2, 0,m2
χi
,m2

ϕ,m
2
ϕ)
]
,

(E.1.1)

C ′
9 =

∑
i

λ1iλ
∗
2i

3
√

2GF q
2

[
B1(m2

c ,m
2
χi
,m2

ϕ) + 2C00(m2
c , q

2, 0,m2
χi
,m2

ϕ,m
2
ϕ)

+m2
c

{
C1(m2

c , q
2, 0,m2

χi
,m2

ϕ,m
2
ϕ) + C11(m2

c , q
2, 0,m2

χi
,m2

ϕ,m
2
ϕ)

+C12(m2
c , q

2, 0,m2
χi
,m2

ϕ,m
2
ϕ)
}]

, (E.1.2)

where B and C are loop functions using LoopTools [291] notation.

E.2 Direct Detection

E.2.1 LUX

For situations where we have both a measured event count Nobs
k (binned into energy

bins labelled by k), and theoretical background Nbck
k , we can use the likelihood

ratio test, a method based on a hypothesis test between a background only, and
background+signal model, with likelihoods L,Lbck respectively [458].

The likelihood of observing the data, D, assuming a particular set of parameters
{λ}, is denoted L(D|{λ}). The likelihood of each bin is a Poisson distribution
Poiss(Nobs, N th(λ)) where N th

k are the predicted number of signal events (including
background):

L(Nobs|{λ}) =
∏
k

(
N th

k

)N
obs
k

Nobs
k !

exp
[
−N th

k

]
(E.2.1)

and where N th(λ) = NDM(λ) + Nbck. The background only model is identical but
with N th = Nbck. Then the test statistic

TS(λ) = −2 log
(
L
Lbck

)
≈ 2

∑
k

(
N th

k −Nobs
k log

[
N th

k +Nbck
k

Nbck
k

])
(E.2.2)

follows a χ2 distribution – the cumulative probability density function of χ2(x)
represents the probability that we observe the data given the model parameters λ.
The value of x such that χ2(x) = C (i.e. the C% confidence limit) depends on the
number of parameters {λ} – for only one parameter for example one can look up
that χ2(2.71) = 0.9, which means that the 90 % confidence bounds on λ are given
by TS(λ) = 2.71.
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ū, c̄

u, c
χi

χj

φ

Figure E.2: The above diagram must include initial/final state ra-
diation from external legs or internal bremsstrahlung
from the mediator. The contribution is roughly equal
amongst these emissions.

E.2.2 CDMSlite

For CDMSlite, we use a conservative method based on the statement that the 90 %
confidence limit is such that there is a probability of 0.9 that if the model were true,
then the experiment would have measured more events (n) than have been measured
(nobs). Using the Poisson distribution this probability is

P (n > nobs|µ) =
∞∑

n=nobs

µn

n! exp(−µ) ≈
∞∫

nobs

1√
2πµ exp

(
−(t− µ)2

2µ

)
dt = 0.9 (E.2.3)

and in the limit nobs ≫ 1, this can be approximated by

P (n > nobs|µ) = 1
2

(
Erfc

(
nobs − µ√

2µ

))
= 0.9 . (E.2.4)

This equation is numerically solvable for µ giving a required signal µ = 109+51
−50, 88±

14, 635±37 and 207±20 events for energy bins 1 to 4 respectively. This is conservative
since a large portion of the measured events are background, and the resulting limits
are slightly weaker than those given by the CDMSlite collaboration.

E.3 Feynman Diagrams for collider searches

E.3.1 Monojet processes

The dominant diagrams contributing to the pure monojet process are shown in
Figures E.2 and E.3. Each processes scales as σ ∝ (λλ†)αs and can become extremely
large for large λ. The cross section is dominated by the diagrams containing a heavy
ϕ resonance.
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g

u χi

φ

φ

q

χ̄j g

u, c χi

φ

χ̄j

q

g

u, c

qu, c

χ̄j

χi

Figure E.3: The s-channel ϕ resonance is responsible for top left
and bottom dominating over top right, and the addi-
tional enhancement due to the gluon pdf over Figure E.2
makes these the overall dominant monojet contribution.
For very heavy mediators top left is suppressed due to
the two propagators.
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g

g φ

φ g

g φ

φ

g

g φ

φ

Figure E.4: Gluon fusion dijet processes σ ∝ α2
s.

ū, c̄

u, c φ

φ

χi

ū, c̄

u, c φ

φ

Figure E.5: The left (right) process has σ ∝ (λλ†)2(α2
s) and so the

dominance depends on the size of the new couplings –
for couplings which are large enough to be excluded it
is usually the left diagram which dominates.

E.3.2 Dijet processes

The dominant processes contributing to the production of on-shell ϕ, which decay
ϕ → qiχj producing a dijet signal, are shown in Figures E.4 and E.5. In monojet
analyses, this provides a subdominant contribution compared with pure monojet
processes (Figures E.2 and E.3) in most of the parameter space.





Appendix F

Additional information from
“Charming new physics in rare Bs
decays and mixing?”

In this appendix we provide additional information on the technical aspects of
our results for the anomalous dimensions entering in the RGE (Equation 5.6.1) in
Chapter 5.

A set of Wilson coefficients that contains C7, C9, and Cc
1...4 and is closed under

renormalisation necessarily also contains four QCD-penguin coefficients CPi
mul-

tiplying the operators P3...6 (we define them as in [340]) and the chromodipole
coefficient C8g, resulting in an 11×11 anomalous dimension matrix γ. If the rescaled
semileptonic operator Q̃9(µ) = (4π/αs(µ))Q9V (µ) is used, then to leading order
γij(µ) = αs(µ)/(4π)γ(0)

ij , with constant γ(0)
ij . As is well known, this matrix is already

scheme-dependent at LO [347–349]. A scheme-independent matrix γeff(0) can be
achieved by replacing C7 and C8 by the scheme-independent combinations

Ceff
7 = C7 +

∑
i

yiCi , (F.0.1)

Ceff
8 = C8 +

∑
i

ziCi , (F.0.2)

where

⟨sγ|Qi|b⟩ = yi⟨sγ|Q7γ|b⟩ , (F.0.3)
⟨sg|Qi|b⟩ = zi⟨sγ|Q8g|b⟩ , (F.0.4)

to lowest order and the sums run over all four-quark operators. We find that yi and zi

vanish forQc
1...4, leaving only the known coefficients yPi

= (−1/3,−4/9,−20/3,−80/9)i

and zPi
= (1,−1/6, 20,−10/3)i (i = 3 . . . 6) [340]. The BSM correction ∆Ceff

9 in
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Equations 5.3.2 and 5.3.7 coincides with the (BSM correction to the) coefficient C9

of Q9V to LL accuracy.

Many of the elements of γeff(0) are known [337, 341–348], except for γeff(0)
Q

c
i Q7γ

, γeff(0)
Q

c
i Q8g

,
γ

eff(0)
Q

c
i Pj

, and γeff(0)
Q

c
i Q̃9

, for i = 3, 4. The latter can be read off from the logarithmic terms
in Equation 5.3.2, and the mixing into Pi follows from substituting gauge coupling
and colour factors in the diagram shown on the left of Figure 5.1. This gives

γ
(0)
Q

c
i Q̃9

=
(
−8

3 ,−
8
9 ,

4
3 ,

4
9

)
i
, γ

(0)
Q

c
i P4

=
(

0, 4
3 , 0,−

2
3

)
i
,

for i = 1, 2, 3, 4, with the mixing into CP3,5,6 vanishing.

The leading mixing into Ceff
7 arises at two loops [350–353] and is the technically

most challenging aspect of our results. Our calculation employs the 1PI (off-shell)
formalism and the method of [354] for computing UV divergences, which involves
an infrared-regulator mass and the appearance of a set of gauge-non-invariant coun-
terterms. The result is

γ
eff(0)
Q

c
i Q7

=
(

0, 416
81 , 0,

224
81

)
i

(i = 1, 2, 3, 4) .

Our stated results for i = 1, 2 agree with the results in [340,345], which constitutes
a cross-check of our calculation.

We have not obtained the 2-loop mixing of Cc
3,4 into C8g and set these anomalous

dimension elements to zero. For the case of Cc
1,2 where this mixing is known, the

impact of neglecting γeff(0)
i8 on ∆Ceff

7 (µ) is small (the only change being −0.19∆C2 →
−0.18∆C2 in Equation 5.3.6). We expect a similarly small error in the case of ∆C3,4.



Appendix G

Additional information from
“Dimension-six matrix elements
from sum rules”

In this appendix we provide additional information relating to our work in Chapter 6.

In Appendix G.1 we provide our choice of basis for the evanescent operators for
both the ∆B = 2 and ∆B = 0 sectors, along with the corresponding anomalous
dimension matrices.

In Appendix G.2 we show our choice of input parameters (Table G.1) as well as
a detailed breakdown of the uncertainties associated with our results for the bag
parameters (Tables G.2 to G.5).

Finally in Tables G.6 to G.9 we provide a breakdown of the errors in our mixing and
lifetime ratio observables.
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G.1 Basis of evanescent operators and ADMs

G.1.1 ∆B = 2 operators

Our choice of basis for the evanescent operators is given by

E1 = b̄iγµ(1− γ5)qj b̄jγ
µ(1− γ5)qi −Q1 ,

E2 = b̄iγµγν(1− γ5)qi b̄jγ
µγν(1− γ5)qj − (8− 4ϵ)Q2 − (8− 8ϵ)Q3 ,

E3 = b̄iγµγν(1− γ5)qj b̄jγ
µγν(1− γ5)qi − (8− 8ϵ)Q2 − (8− 4ϵ)Q3 ,

E4 = b̄iγµγνγρ(1− γ5)qi b̄jγ
µγνγρ(1− γ5)qj − (16− 4ϵ)Q1 ,

E5 = b̄iγµγνγρ(1− γ5)qj b̄jγ
µγνγρ(1− γ5)qi − (16− 4ϵ)(Q1 + E1) ,

E6 = b̄iγµ(1− γ5)qi b̄jγ
µ(1 + γ5)qj + 2Q5 ,

E7 = b̄iγµ(1− γ5)qj b̄jγ
µ(1 + γ5)qi + 2Q4 ,

E8 = b̄iγµγν(1− γ5)qi b̄jγ
µγν(1 + γ5)qj − 4Q4 ,

E9 = b̄iγµγν(1− γ5)qj b̄jγ
µγν(1 + γ5)qi − 4Q5 ,

(G.1.1)

for QCD and

Ẽ1 = h̄
{(+)
i γµ(1− γ5)qj h̄

(−)}
j γµ(1− γ5)qi − Q̃1 ,

Ẽ2 = 1
2Q̃1 + Q̃2 + h̄

{(+)
i (1− γ5)qj h̄

(−)}
j (1− γ5)qi ,

Ẽ3 = h̄
{(+)
i γµγν(1− γ5)qi h̄

(−)}
j γµγν(1− γ5)qj + (4 + a1ϵ)Q̃1 ,

Ẽ4 = h̄
{(+)
i γµγν(1− γ5)qj h̄

(−)}
j γµγν(1− γ5)qi + (4 + a1ϵ)(Q̃1 + Ẽ1) ,

Ẽ5 = h̄
{(+)
i γµγνγρ(1− γ5)qi h̄

(−)}
j γµγνγρ(1− γ5)qj − (16 + a2ϵ)Q̃1 , (G.1.2)

Ẽ6 = h̄
{(+)
i γµγνγρ(1− γ5)qj h̄

(−)}
j γµγνγρ(1− γ5)qi − (16 + a2ϵ)(Q̃1 + Ẽ1) ,

Ẽ7 = h̄
{(+)
i γµ(1− γ5)qi h̄

(−)}
j γµ(1 + γ5)qj + 2Q̃5 ,

Ẽ8 = h̄
{(+)
i γµ(1− γ5)qj h̄

(−)}
j γµ(1 + γ5)qi + 2Q̃4 ,

Ẽ9 = h̄
{(+)
i γµγν(1− γ5)qi h̄

(−)}
j γµγν(1 + γ5)qj − (4 + a3ϵ)Q̃4 ,

Ẽ10 = h̄
{(+)
i γµγν(1− γ5)qj h̄

(−)}
j γµγν(1 + γ5)qi − (4 + a3ϵ)Q̃5 ,

for HQET. It is straightforward to verify that the evanescent operators vanish in
four dimensions by using the Fierz identities Equations A.0.2, A.0.4 and A.0.5 along
with the relation

γµγνγρ = gµνγρ + gνργµ − gµργν − iϵµνρλγ
λγ5. (G.1.3)

A useful strategy to simplify expressions with two Dirac matrices is to use projection
identities, e.g.

h̄(±)γµγν(1− γ5)q = ±h̄(±)/vγµγν(1− γ5)q, (G.1.4)
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and then reduce the number of Dirac matrices with Equation G.1.3.

In the decomposition shown in Equation 6.2.8 the LO QCD ADM is

γ
(0)
QQ =



6(Nc−1)
Nc

0 0 0 0

0 −2(3N
2
c −4Nc−1)

Nc

4Nc−8
Nc

0 0
0 4(Nc−2)(Nc+1)

Nc

2(Nc+1)2

Nc
0 0

0 0 0 −6(N2
c −1)

Nc
0

0 0 0 −6 6
Nc


, (G.1.5)

γ
(0)
QE =



6 0 0 − 1
Nc

1 0 0 0 0
0 − 1

Nc
1 0 0 0 0 0 0

0 1
2

Nc

2 −
1

Nc
0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
Nc

1
0 0 0 0 0 0 0 1

2
Nc

2 −
1

Nc


. (G.1.6)

In HQET we find

γ̃
(0)
Q̃Q̃

=



3
Nc
− 3Nc 0 0 0

1 + 1
Nc

−3Nc + 4 + 7
Nc

0 0
0 0 6

Nc
− 3Nc −3

0 0 −3 6
Nc
− 3Nc

 , (G.1.7)

γ̃
(0)
Q̃Ẽ

=


0 0 0 0 − 1

4Nc

1
4 0 0 0 0

−1 −4 − 1
4Nc

1
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
4Nc

1
4

0 0 0 0 0 0 0 0 1
4 − 1

4Nc

 . (G.1.8)

Our result (Equation G.1.5) with Nc = 3 differs from the results of [459,460] because
we have only used the replacements implied by the basis of evanescent operators
(Equation G.1.1) to simplify products of Dirac matrices. We can reproduce their
result by applying 4-dimensional Fierz identities that relate Q1, Q2 and Q3. The
upper left 2× 2 sub-matrix of Equation G.1.7 agrees with [368].
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G.1.2 ∆B = 0 operators

We define the basis of evanescent operators in QCD following [403]:

Eq
1 = b̄γµγνγρ(1− γ5)q q̄γργνγµ(1− γ5)b− (4− 8ϵ)Qq

1 ,

Eq
2 = b̄γµγν(1− γ5)q q̄γνγµ(1 + γ5)b− (4− 8ϵ)Qq

2 ,

Eq
3 = b̄γµγνγρ(1− γ5)TAq q̄γργνγµ(1− γ5)TAb− (4− 8ϵ)T q

1 ,

Eq
4 = b̄γµγν(1− γ5)TAq q̄γνγµ(1 + γ5)TAb− (4− 8ϵ)T q

2 .

(G.1.9)

In HQET we again introduce parameters a1,2 to keep track of the scheme dependence.

Ẽq
1 = h̄γµγνγρ(1− γ5)q q̄γργνγµ(1− γ5)h− (4 + a1ϵ)Q̃q

1 ,

Ẽq
2 = h̄γµγν(1− γ5)q q̄γνγµ(1 + γ5)h− (4 + a2ϵ)Q̃q

2 ,

Ẽq
3 = h̄γµγνγρ(1− γ5)TAq q̄γργνγµ(1− γ5)TAh− (4 + a1ϵ)T̃ q

1 ,

Ẽq
4 = h̄γµγν(1− γ5)TAq q̄γνγµ(1 + γ5)TAh− (4 + a2ϵ)T̃ q

2 .

(G.1.10)

The isospin breaking combinations of the evanescent operators are defined in analogy
to Equation 6.5.3. The LO ADM in QCD takes the form

γ
(0)
QQ =


0 0 12 0
0 6

Nc
− 6Nc 0 0

3− 3
N

2
c

0 − 12
Nc

0
0 0 0 6

Nc

 , (G.1.11)

γ
(0)
QE =


0 0 −2 0
0 0 0 −2

1
2N

2
c

− 1
2 0 2

Nc
− Nc

2 0
0 1

2N
2
c

− 1
2 0 2

Nc
− Nc

2

 . (G.1.12)

The HQET result is given by

γ̃
(0)
Q̃Q̃

=



3
Nc
− 3Nc 0 6 0
0 3

Nc
− 3Nc 0 6

3
2 −

3
2N

2
c

0 − 3
Nc

0
0 3

2 −
3

2N
2
c

0 − 3
Nc

 , (G.1.13)

γ̃
(0)
Q̃Ẽ

=


0 0 −1

2 0
0 0 0 −1

2
1

8N
2
c

− 1
8 0 1

2Nc
− Nc

4 0
0 1

8N
2
c

− 1
8 0 1

2Nc
− Nc

4

 . (G.1.14)
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Our result in Equation G.1.11 is in agreement with [337,422] and Equation G.1.13
reproduces the result of [196].1 The results in Equations G.1.12 and G.1.14 are new.
The matching coefficients read

C
(0)
QiQ̃j

= δij (G.1.15)

at LO and

C
(1)
QiQ̃j

=


−4Lµ − 32

3
16
3 −a1

4 − 3Lµ − 13 −2
0 4Lµ + 16

3 −3
2 −a2

4 + 3Lµ − 1
−a1

18 −
2Lµ

3 −
26
9 −4

9 −7a1
24 + 3Lµ

2 + 7
6 −3

−1
3 −a2

18 + 2Lµ

3 −
2
9 −1

4 −7a2
24 −

3Lµ

2 −
29
6

 (G.1.16)

at NLO where we have set Nc = 3 for brevity.

G.2 Inputs and detailed overview of
uncertainties

Parameter Value Source

mb(mb)
(
4.203+0.016

−0.034

)
GeV [390,391]

mPS
b (2 GeV)

(
4.532+0.013

−0.039

)
GeV [390,391]

m1S
b

(
4.66+0.04

−0.03

)
GeV [389]

mkin
b (1 GeV) (4.553± 0.020) GeV [461]

mc(mc) (1.279± 0.013) GeV [462]
αs(MZ) 0.1181± 0.0011 [389]
Vus 0.2248± 0.0006 [389]
Vub 0.004 09± 0.000 39 [389]
Vcb 0.0405± 0.0015 [389]
γCKM

(
73.2+6.3

−7.0

)
° [389]

fB (189± 4) MeV [389]
fBs (227.2± 3.4) MeV [389]
fD (203.7± 4.8) MeV [389]

Table G.1: Input values for parameters. Note that for fB we use
the mean of fB and fB+ , while for fD we use the “ex-
perimental” value instead of the lattice average, since
the former is in significantly better agreement with sum
rule results [406,407,411,412].

1Note that [196] contains a misprint that has been identified in [404].
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Λ intrinsic SR condensates µρ 1/mb µm ai

BQ1
+0.001
−0.002 ±0.018 ±0.004 +0.011

−0.022 ±0.010 +0.045
−0.039

+0.007
−0.007

BQ2
+0.014
−0.017 ±0.020 ±0.004 +0.012

−0.019 ±0.010 +0.071
−0.062

+0.015
−0.015

BQ3
+0.060
−0.074 ±0.107 ±0.023 +0.016

−0.008 ±0.010 +0.086
−0.069

+0.053
−0.052

BQ4
+0.007
−0.006 ±0.021 ±0.011 +0.003

−0.003 ±0.010 +0.088
−0.079

+0.005
−0.006

BQ5
+0.019
−0.015 ±0.018 ±0.009 +0.004

−0.006 ±0.010 +0.077
−0.068

+0.012
−0.012

Table G.2: Individual errors for the bag parameters of the ∆B = 2
matrix elements.

Λ intrinsic SR condensates µρ 1/mb µm ai

B1
+0.003
−0.002 ±0.019 ±0.002 +0.002

−0.002 ±0.010 +0.060
−0.052

+0.002
−0.003

B2
+0.001
−0.001 ±0.020 ±0.002 +0.000

−0.001 ±0.010 +0.084
−0.076

+0.001
−0.002

ϵ1
+0.006
−0.007 ±0.022 ±0.003 +0.003

−0.003 ±0.010 +0.010
−0.012

+0.006
−0.007

ϵ2
+0.005
−0.006 ±0.017 ±0.003 +0.002

−0.001 ±0.010 +0.001
−0.002

+0.003
−0.004

Table G.3: Individual errors for the bag parameters of the ∆B = 0
matrix elements.

Λ intrinsic SR condensates µρ 1/mc µm ai

BQ1
+0.001
−0.002 ±0.013 ±0.003 +0.009

−0.021 ±0.030 +0.039
−0.021 ±0.003

BQ2
+0.011
−0.014 ±0.015 ±0.003 +0.010

−0.016 ±0.030 +0.092
−0.050 ±0.012

BQ3
+0.037
−0.045 ±0.059 ±0.013 +0.016

−0.016 ±0.030 +0.116
−0.059 ±0.016

BQ4
+0.006
−0.005 ±0.017 ±0.009 +0.003

−0.003 ±0.030 +0.131
−0.071 ±0.004

BQ5
+0.014
−0.012 ±0.014 ±0.007 +0.004

−0.005 ±0.030 +0.127
−0.069 ±0.004

Table G.4: Individual errors for the bag parameters of the ∆C = 2
matrix elements.

Λ intrinsic SR condensates µρ 1/mc µm ai

B1
+0.004
−0.003 ±0.017 ±0.002 +0.002

−0.002 ±0.030 +0.068
−0.037

+0.003
−0.005

B2
+0.001
−0.000 ±0.015 ±0.001 +0.000

−0.000 ±0.030 +0.120
−0.065

+0.000
−0.001

ϵ1
+0.007
−0.008 ±0.024 ±0.004 +0.003

−0.004 ±0.030 +0.012
−0.022

+0.006
−0.008

ϵ2
+0.003
−0.004 ±0.011 ±0.002 +0.001

−0.001 ±0.030 +0.000
−0.000

+0.001
−0.002

Table G.5: Individual errors for the bag parameters of the ∆C = 0
matrix elements.
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Error contribution

Parameter ∆MSM
s / ps−1 ∆ΓPS

s / ps−1 as,PS
sl / 10−5

δ(BQ1) ±1.1 ±0.005 ±0.01
δ(BQ3) ±0.0 ±0.005 ±0.01
δ(BR0) ±0.0 ±0.003 ±0.00
δ(BR1) ±0.0 ±0.000 ±0.00
δ(BR

′
1
) ±0.0 ±0.000 ±0.00

δ(BR2) ±0.0 ±0.016 ±0.00
δ(BR3) ±0.0 ±0.001 ±0.02
δ(BR

′
3
) ±0.0 ±0.000 ±0.05

δ(fBs) ±0.5 ±0.002 ±0.00
δ(µ1) ±0.0 +0.007

−0.018
+0.04
−0.08

δ(µ2) ±0.1 +0.000
−0.002 ±0.01

δ(mb) ±0.0 +0.000
−0.001 ±0.01

δ(mc) ±0.0 +0.000
−0.001 ±0.06

δ(αs) ±0.0 ±0.000 ±0.04
δ(CKM) +1.4

−1.3 ±0.006 +0.21
−0.22

Table G.6: Individual errors for the Bs mixing observables.

Error contribution

Parameter ∆MSM
d / ps−1 ∆ΓPS

d / 10−3 ps−1 ad,PS
sl / 10−4

δ(BQ1) +0.04
−0.03 ±0.16 ±0.02

δ(BQ3) ±0.00 +0.17
−0.16 ±0.03

δ(BR0) ±0.00 ±0.11 ±0.01
δ(BR1) ±0.00 ±0.01 ±0.00
δ(BR

′
1
) ±0.00 ±0.01 ±0.00

δ(BR2) ±0.00 ±0.54 ±0.00
δ(BR3) ±0.00 ±0.00 ±0.04
δ(BR

′
3
) ±0.00 ±0.01 ±0.09

δ(fB) ±0.03 ±0.11 ±0.00
δ(µ1) ±0.00 +0.24

−0.62
+0.17
−0.07

δ(µ2) ±0.00 +0.00
−0.08

+0.01
−0.03

δ(mb) ±0.00 +0.01
−0.03

+0.01
−0.03

δ(mc) ±0.00 +0.01
−0.02 ±0.13

δ(αs) ±0.00 ±0.01 ±0.08
δ(CKM) ±0.08 +0.38

−0.37
+0.47
−0.44

Table G.7: Individual errors for the Bd mixing observables.
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Parameter Error contribution
δ(B1) ±0.002
δ(B2) ±0.000
δ(ϵ1) +0.016

−0.015
δ(ϵ2) ±0.004
δ(ρ3) ±0.001
δ(ρ4) ±0.000
δ(σ3) ±0.013
δ(σ4) ±0.000
δ(fB) +0.004

−0.003
δ(µ1) +0.000

−0.013
δ(µ0) +0.000

−0.006
δ(mb) +0.000

−0.001
δ(mc) ±0.000
δ(αs) ±0.002
δ(CKM) ±0.006

Table G.8: Individual errors for the ratio τ(B+)/τ(B0 ) in the PS
mass scheme.

Parameter Error contribution
δ(B1) +0.07

−0.05
δ(B2) ±0.00
δ(ϵ1) +0.52

−0.47
δ(ϵ2) ±0.017
δ(ρ3) ±0.05
δ(ρ4) ±0.00
δ(σ3) ±0.46
δ(σ4) ±0.00
δ(fD) ±0.08
δ(µ1) +0.07

−0.40
δ(µ0) +0.08

−0.21
δ(mc) ±0.08
δ(ms) ±0.00
δ(αs) +0.07

−0.06
δ(CKM) ±0.00

Table G.9: Individual errors for the ratio τ(D+)/τ(D0 ) in the PS
mass scheme.



Appendix H

Additional information from “One
constraint to kill them all?”

In this appendix, we break down our updated SM calculation in Chapter 7 by
showing the inputs used and the resulting error breakdown. We also discuss in more
detail the dependence of ∆Ms on inputs from lattice QCD and the CKM matrix
elements.

H.1 Numerical input for theory predictions

The inputs we use in our numerical evaluations are shown in Table H.1. The values
are taken from the PDG [224,389], from non-relativistic sum rules (NRSR) [390,391],
from the CKMfitter group [29] and the non-perturbative parameters from FLAG
(July 2017 online update [162]). For αs we use RunDec [388] with 5-loop accuracy
[392–396], running from MZ down to the bottom mass scale. At the low scale we
use 2-loop accuracy to determine Λ(5).

H.2 Error budget of the theory predictions

In this section we compare the error budget of our new SM prediction for ∆MSM
s

with the ones given in 2015 by [165], in 2011 by [208] and 2006 by [207] – the results
are shown in Table H.2.

We observe a considerable improvement in accuracy and a sizeable shift compared to
the 2015 prediction, mostly stemming from the new lattice results for fBs

√
B, which

is still responsible for the largest error contribution of about 6 %. The next important
uncertainty is the accuracy of the CKM element Vcb, which contributes about 2 % to
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Parameter Value Source
MBs (5.366 89± 0.000 19) GeV PDG 2017
mt (173.1± 0.6) GeV PDG 2017
m̄t(m̄t) (165.65± 0.57) GeV own evaluation
m̄b(m̄b) (4.203± 0.025) GeV NRSR
αs(MZ) 0 1181(11) PDG 2017
αs(mb) 0 2246(21) own evaluation
Λ(5) (0.2259± 0.0068) GeV own evaluation
Vus 0.22508+0.00030

−0.00028 CKMfitter
Vcb 0.04181+0.00028

−0.00060 CKMfitter
|Vub/Vcb| 0 0889(14) CKMfitter
γCKM 1.141+0.017

−0.020 CKMfitter
fBs

√
B̂ (274± 8) MeV FLAG

Table H.1: Input parameters for our update of ∆Ms.

Error contribution
Parameter This work ABL 2015 [165] LN 2011 [208] LN 2006 [207]

δ(fBs

√
B) 5.8 % 13.9 % 13.5 % 34.1 %

δ(|Vcb|) 2.1 % 4.9 % 3.4 % 4.9 %
δ(mt) 0.7 % 0.7 % 1.1 % 1.8 %
δ(αs) 0.1 % 0.1 % 0.4 % 2 %
δ(γCKM) 0.1 % 0.1 % 0.3 % 1 %
δ(|Vub/Vcb|) < 0.1 % 0.1 % 0.2 % 0.5 %
δ(m̄b) < 0.1 % < 0.1 % 0.1 % —∑
δ 6.2 % 14.8 % 14.0 % 34.6 %

Table H.2: Individual contributions to the theoretical error of the
mass difference ∆Ms within the SM and comparison
with the values obtained in [165, 207, 208]. In the last
row the errors are summed in quadrature.
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Source fBs

√
B̂ ∆MSM

s

HPQCD14 [182] (247± 12) MeV (16.2± 1.7) ps−1

ETMC13 [181] (262± 10) MeV (18.3± 1.5) ps−1

HPQCD09 [463] = FLAG13 [220] (266± 18) MeV (18.9± 2.6) ps−1

FLAG17 [161] (274± 8) MeV (20.01± 1.25) ps−1

Fermilab16 [217] (274.6± 8.8) MeV (20.1± 1.5) ps−1

HQET-SR [4,407]
(
278+28

−24

)
MeV

(
20.6+4.4

−3.4

)
ps−1

HPQCD06 [358] (281± 20) MeV (21.0± 3.0) ps−1

RBC/UKQCD14 [464] (290± 20) MeV (22.4± 3.4) ps−1

Fermilab11 [180] (291± 18) MeV (22.6± 2.8) ps−1

Table H.3: Predictions for the non-perturbative parameter fBs

√
B̂

and the corresponding SM prediction for ∆Ms. The
current FLAG average is dominated by the FERMI-
LAB/MILC value from 2016. Note that the HQET-SR
result is found by combining our result for the bag pa-
rameter (Equation 6.4.2, which was published in [4])
with a separate sum rule calculation of the decay con-
stant.

the error budget. The CKM parameters were determined assuming unitarity of the
3×3 CKM matrix – if this assumption is relaxed, then the uncertainties can increase.
The uncertainties due to the remaining parameters are subleading. In total we are
left with an overall uncertainty of about 6 %, in comparison to the experimental
uncertainty of about 0.1 %.

H.3 Non-perturbative inputs

As a word of caution we present in Table H.3 a wider range of non-perturbative
determinations of the matrix elements of the four-quark operators alongside the
corresponding predictions for the mass difference.

HPQCD presented in 2014 preliminary results for Nf = 2+1 [182] – for our numerical
estimate in Table H.3 we extracted the numbers from Figure 3 in those proceedings.
When finalised, this new calculation will supersede the 2006 [358] and 2009 [463]
values. The ETMC Nf = 2 number stems from 2013 [181], it is obtained with
only two active flavours in the lattice simulation. The Fermilab/MILC Nf = 2 + 1
number is from 2016 [217] and it supersedes the 2011 value [180]. This value currently
dominates the FLAG average. The numerical effect of these new inputs on mixing
observables was partially studied in Chapter 3. The previous FLAG average from
2013 [220] was considerably lower. There is also a large Nf = 2 + 1 value from
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RBC-UKQCD presented at LATTICE 2015 (update of [464]). However, this number
is obtained in the static limit and currently missing 1/mb corrections are expected
to be very sizeable.1 The HQET sum rules estimate for the bag parameter from
Chapter 6 can also be combined with the decay constant from lattice.

It would be very desirable to see a convergence of these determinations, and in
particular an independent confirmation of the Fermilab/MILC result which currently
dominates the FLAG average.

H.4 CKM-dependence

The second most important input parameter for the prediction of ∆Ms is the CKM
parameter Vcb. There is a long-standing discrepancy between the inclusive determina-
tion and values obtained from studying exclusive B decays, see [465]. Recent studies
have found that a problem with the use of a certain form factor parameterisation in
the experimental analysis might be the cause of the low exclusive value. The form
factor models are denoted by CLN [466] and BGL [467]. Traditionally experiments
had used CLN, but it appears that this might underestimate some uncertainties.
Using the BGL parameterisation instead one finds (see [468–471]) values that lie
considerably closer to the inclusive one. Currently, there are various determinations
of Vcb available:

V Inclusive
cb = 0.04219± 0.00078 [142]
V

B→D
cb = 0.03918± 0.00094± 0.00031 [142]

V
B→D∗

, CLN
cb = 0.03871± 0.00047± 0.00059 [142]

V
B→D∗

, BGL
cb = 0.0419+0.0020

−0.0019 [468] .

In Figure H.1 we plot the dependence of the SM prediction of ∆Ms on Vcb, and
show the regions predicted by the above inclusive and exclusive determinations. We
use the CKMfitter result for Vcb (see Table H.1) for our new SM prediction of ∆Ms

(see Equation 7.2.3 and the (upper) horizontal dashed line denoted with “SM”),
and the corresponding error band is shown in orange. The predictions obtained by
using the inclusive value of Vcb only are given by the blue region. For completeness
we also show the regions obtained by using the various exclusive extractions of Vcb.
The disfavoured CLN values result in much lower values for the mass difference
(hatched areas), while the BGL value agrees well with the inclusive region, albeit
with a higher uncertainty. The experimental value of ∆Ms is shown by the (lower)

1Private communication with Tomomi Ishikawa.
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Figure H.1: Dependence of the SM prediction of ∆Ms on the value
of Vcb.

horizontal dashed line denoted with “Exp”.

The preference for the inclusive determination agrees with the value obtained from
the CKM fit (which we use in our SM estimate), as well as with the fit value that is
found if the direct measurements of Vcb are not included in the fit [29]:

V
CKMfitter (no direct)

cb = 0.04235+0.00074
−0.00069 . (H.4.1)

We also note that the CKMfitter determinations take into account loop-mediated
processes, where potentially NP could be present and affect the determination.
Taking only tree-level inputs, they find:1

|Vus| = 0.22520+0.00012
−0.00038 , (H.4.2)

|Vcb| = 0.04175+0.00033
−0.00172 , (H.4.3)

|Vub/Vcb| = 0.092+0.004
−0.005 , (H.4.4)

γCKM = 1.223+0.017
−0.030 , (H.4.5)

and using these inputs we find

∆MSM,2017 (tree)
s = (19.9± 1.5) ps−1 , (H.4.6)

which shows an overall consistency with the prediction in Equation 7.2.3.

1Private communication with Sébastien Descotes-Genon.
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